• Title/Summary/Keyword: floating turbine

Search Result 143, Processing Time 0.016 seconds

Control of 30kW Grid-Connected PCS for Wave Power Generation (파력발전용 30kW 계통연계형 PCS 제어)

  • Kim, Wan-Seok;Kim, Jae-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.470-475
    • /
    • 2019
  • This paper deals with a 30kW grid-connected PCS (Power Conversion System) for an Oscillating Water Column (OWC) wave-power generation system. Wave power generation in marine energy is suitable for Korea with the characteristics of a peninsula with three sides facing the sea. In the case of coastal disasters, wave generators can act as a breakwater to reduce damage, and can be integrated with other marine power generation systems to increase efficiency. Wave power generation systems are classified into various types, such as oscillating bodies, OWC, and overtopping according to the operation principle, and they can also be classified into two types according to the installation method: a fixed structure and floating structure. This paper proposes a 30kW grid-connected PCS topology and model for OWC wave power generation that is structurally stable with a turbine and generator that are relatively easy to maintain, and then provide a control method required for grid connection, including DC link voltage control. Simulation verification was performed to verify the proposed PCS.

Numerical Analysis on Bearing Capacity of a Suction Bucket in Clay (수치해석을 이용한 점성토 지반에 설치된 버켓기초의 지지력 분석)

  • Le, Chi-Hung;Jeong, Jae-Uk;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.25-33
    • /
    • 2011
  • Suction buckets have been widely used for offshore structures such as anchors for floating facilities, and the foundations of offshore wind energy turbines. However, the design guidelines for suction buckets have not been clearly suggested. Therefore, this study performed the numerical analysis by using ABAQUS (2010) to evaluate bearing capacities and load-movement behaviors of the suction bucket in NC clay. For the numerical analysis, the depth ratio L/D (L=embedded length of skirt; D=diameter of a bucket) was varied from 0.25 to 1.0. The analysis results showed that the L/D ratio has a significant effect on the bearing capacity, and the vertical and horizontal capacities respectively increased by about 40% and 90%, when L/D ratio increased from 0.25 to 1.0. At the vertical loading, the bucket showed the similar failure mode with a deep foundation, so the shaft and toe resistances can be separately evaluated. At the horizontal loading, the bucket with L/D=O.25 showed the sliding failure mode and the bucket with $L/D{\geq}0.5$ showed the rotational failure mode.

A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents (강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구)

  • Chunsik Shim;Min Suk Kim;Chulmin Kim;Yuho Rho;Jeabok Lee;Kwangsu Chea;Kangho Kim;Daseul Jeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.