• Title/Summary/Keyword: flight quality

Search Result 329, Processing Time 0.024 seconds

Aerodynamic Effects of Gun Gas on the Aircraft's Armament System (항공기 무장시스템 Gun Gas 공력특성에 관한 연구)

  • Choi, Hyoung Jun;Kim, Seung Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.623-629
    • /
    • 2020
  • This study examined the airflow field around a gun port on the flight condition of gunfire to verify the aircraft performance and safety effects and gun gas rate, path according to the options of diverter configuration. The gun port diverter not only effectively lowered the heat generated by gunfire but also effectively discharged the gun gas upwards. The path of gun gas can be changed according to its configuration. According to the optional configuration of the rear-gun-port diverter, the flow rate, path, and pressure of the gun gas were analyzed during gunfire. An analysis of the internal velocity distribution and the temperature change of the gun port revealed a rapid decrease in flow rate through the rear diverter according to the option configuration. The forward flow rate showed a similar tendency with little change. This ensures that the gun gas generated during gunfire has a sufficient flow distance from the aircraft surface, regardless of the rear gun port diverter's optional configuration. The flow stagnation of gun gas according to the option configuration of diverter had a great influence on the internal temperature rise of a gun port.

SAR Motion Compensation Using GPS/IMU (GPS/IMU를 이용한 SAR 영상의 요동 보상 기법에 대한 연구)

  • Kim, Dong-Hyun;Park, Sang-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • This paper suggests a motion compensation technique using GPS/IMU data in order to compensate for phase error caused by undesired motion of radar platform. An actual flight trajectory would be deviate from an ideal straight-constant trajectory with a constant velocity for SAR imaging, due to pitch, roll and yaw motion of aircraft caused by turbulence. This leads to blurred SAR images due to inter-pulse phase errors as well as along-track velocity errors. If the motion compensation is carried out to reduce those errors, SAR image quality can be significantly improved. Simulation results show that the motion compensation technique introduced in this paper is an effective tool to improve SAR image quality against severe motion of radar platform.

Qualitative and quantitative analysis of furosine in fresh and processed ginsengs

  • Li, Yali;Liu, Xiaoxu;Meng, Lulu;Wang, Yingping
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.21-26
    • /
    • 2018
  • Background: Furosine (${\varepsilon}$-N-2-furoylmethyl-L-lysine, FML) is an amino acid derivative, which is considered to be an important indicator of the extent of damage (deteriorating the quality of amino acid and proteins due to a blockage of lysine and a decrease in the digestibility of proteins) during the early stages of the Maillard reaction. In addition, FML has been proven to be harmful because it is closely related to a variety of diseases such as diabetes. The qualitative analysis of FML in fresh and processed ginsengs was confirmed using HPLC-MS. Methods: An ion-pair reversed-phase LC method was used for the quantitative analysis of FML in various ginseng samples. Results: The contents of FML in the ginseng samples were 3.35-42.28 g/kg protein. The lowest value was observed in the freshly collected ginseng samples, and the highest value was found in the black ginseng concentrate. Heat treatment and honey addition significantly increased the FML content from 3.35 g/kg protein to 42.28 g/kg protein. Conclusion: These results indicate that FML is a promising indicator to estimate the heat treatment degree and honey addition level during the manufacture of ginseng products. The FML content is also an important parameter to identity the quality of ginseng products. In addition, the generation and regulation of potentially harmful Maillard reaction products-FML in ginseng processing was also investigated, providing a solid theoretical foundation and valuable reference for safe ginseng processing.

Assessing metabolic properties of dairy cows fed low quality straws by integrative arterial and venous metabolomics

  • Wang, Bing;Yu, Zhu;Liu, Jianxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1770-1778
    • /
    • 2020
  • Objective: This study was conducted to reveal potential metabolic differences of dairy cows fed corn stover (CS) and rice straw (RS) instead of alfalfa hay (AH) as main forage source. Methods: Thirty multiparous mid-late lactation Holstein dairy cows were selected and randomly assigned to three diets, AH, CS, or RS (n = 10). After 13 weeks of the feeding trial, coccygeal arterial and superficial epigastric venous plasma samples were collected before morning feeding for gas chromatography time-of-flight/mass spectrometry analyses. Results: In the artery, 8 and 13 metabolites were detected as differential metabolites between AH and CS, and between AH and RS, respectively. The relative abundance of phenylpropanoate (log2fold change [FC]) = 1.30, 1.09), panthenol (log2FC = 2.36, 2.20), threitol (log2FC = 1.00, 1.07), and 3,7,12-trihydroxycoprostane (log2FC = 0.79, 0.78) were greater in both CS and RS than in AH, and tyrosine (log2FC = -0.32), phenylalanine (log2FC = -0.30), and pyruvic acid (log2FC = -0.30) were lower in RS than in AH. In the vein, 1 and 7 metabolites were detected as differential metabolites between AH and CS, and between AH and RS, respectively. By comparing AH and RS, we found that metabolic pathways of phenylalanine, tyrosine, and tryptophan biosynthesis and phenylalanine metabolism were enriched by integrative artery and vein analysis. Furthermore, AH and RS, arterial phenylpropanoate and 4-hydroxyproline were positively, and phenylalanine was negatively correlated with milk urea nitrogen. Finally, in AH and CS, arterial panthenol was negatively correlated with feed efficiency. Conclusion: Arterial metabolic profiles changed more than those in the veins from animals on three forage diets, differing in amino acids. We found that phenylalanine, tyrosine, and tryptophan biosynthesis and phenylalanine metabolism were restricted when cows were fed low-quality cereal straw diets.

Hardware Configuration and Paradox Measurement for the Determination of Arrow Trajectory (화살의 이동궤적을 위한 하드웨어 구성 및 패러독스 측정)

  • Jeong, Yeong-Sang;Yu, Jung-Won;Lee, Han-Soo;Kim, Sung-Shin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.459-464
    • /
    • 2012
  • The point of impact, the shot group, and the flight traces depend on the combination of unique features which decide moving traces of the arrow (paradox of the archer, length of the arrow shaft, weight, angle of the feather, and spline of the arrow shaft). The more dense the impact points in the shot group and the earlier elimination of paradox of the archer, the higher assessment is given for the product. However, there is no way to objectively assess the efficiency and quality of the arrow, and there is no numeric data to be used as the basis for comparison with other products. Although capturing the images of flying arrow using a high-speed motion picture camera is possible, we are limited to observation from specific view angle only. Hence, the criteria for efficiency and quality assessment are mostly based on subjective opinions of experts or hunters, or review on consumers' remarks. In this paper, we propose a hardware composition that are based on three detection frames consisting of line lasers and photo diode arrays without the high-speed motion picture camera. Predicated on measured coordinates data, a nobel method for the archer's paradox measurement, a key parameter that determine the arrow's trajectory, and corresponding numerical analysis model is proposed.

Quality Evaluation of Orthoimage and DSM Based on Fixed-Wing UAV Corresponding to Overlap and GCPs (중복도와 지상기준점에 따른 고정익 UAV 기반 정사영상 및 DSM의 품질 평가)

  • Yoo, Yong Ho;Choi, Jae Wan;Choi, Seok Keun;Jung, Sung Heuk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.3-9
    • /
    • 2016
  • UAV(unmanned aerial vehicle) can quickly produce orthoimage with high-spatial resolution and DSM(digital surface model) at low cost. However, vertical and horizontal positioning accuracy of orthoimage and DSM, which are obtained by UAV, are influenced by image processing techniques, quality of aerial photo, the number and position of GCPs(ground control points) and overlap in flight plan. In this study, effects of overlap and the number of GCPs are analyzed in orthoimage and DSM. Positioning accuracy are estimated based on RMSE(root mean square error) by using dataset of nine pairs. In the experiments, Overlaps and the number of GCPs have influence on horizontal and vertical accuracy of orthoimage and DSM.

Longitudinal Control Using Linear Quadratic Tracker with Integrator and Handling Qualities for Unmanned Rotorcraft (LQTI를 이용한 회전익 무인항공기 종방향 조종성 평가를 위한 제어법칙 설계 및 조종성 평가)

  • Lee, Changmin;Kim, Sungkeun;Jo, Seunghwan;Ra, Chunggil;Kim, Ki-joon;Suk, Jinyoung;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.393-400
    • /
    • 2017
  • A virtual simulation test program to carry out the handling qualities of unmanned Rotorcraft has developed by using the MATLAB GUIDE(Graphic User Interface Development Environment). The handling quality evaluation program based on ADS-33E contributes to design the flight control system and to evaluate handling qualities. In addition, Linear Quadratic Tracker with Integrator(LQTI) attitude controller based on Linear Quadratic Regulator(LQR) for to rotorcraft BO-105C and the effects of the handling qualities is analyzed change to weight matrices of the Q and R.

Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective

  • Jung, Hyung-Jo;Lee, Jin-Hwan;Yoon, Sungsik;Kim, In-Ho
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.669-681
    • /
    • 2019
  • Bridge collapses may deliver a huge impact on our society in a very negative way. Out of many reasons why bridges collapse, poor maintenance is becoming a main contributing factor to many recent collapses. Furthermore, the aging of bridges is able to make the situation much worse. In order to prevent this unwanted event, it is indispensable to conduct continuous bridge monitoring and timely maintenance. Visual inspection is the most widely used method, but it is heavily dependent on the experience of the inspectors. It is also time-consuming, labor-intensive, costly, disruptive, and even unsafe for the inspectors. In order to address its limitations, in recent years increasing interests have been paid to the use of unmanned aerial vehicles (UAVs), which is expected to make the inspection process safer, faster and more cost-effective. In addition, it can cover the area where it is too hard to reach by inspectors. However, this strategy is still in a primitive stage because there are many things to be addressed for real implementation. In this paper, a typical procedure of bridge inspection using UAVs consisting of three phases (i.e., pre-inspection, inspection, and post-inspection phases) and the detailed tasks by phase are described. Also, three major challenges, which are related to a UAV's flight, image data acquisition, and damage identification, respectively, are identified from a practical perspective (e.g., localization of a UAV under the bridge, high-quality image capture, etc.) and their possible solutions are discussed by examining recently developed or currently developing techniques such as the graph-based localization algorithm, and the image quality assessment and enhancement strategy. In particular, deep learning based algorithms such as R-CNN and Mask R-CNN for classifying, localizing and quantifying several damage types (e.g., cracks, corrosion, spalling, efflorescence, etc.) in an automatic manner are discussed. This strategy is based on a huge amount of image data obtained from unmanned inspection equipment consisting of the UAV and imaging devices (vision and IR cameras).

Metabolic profiling and method validation of marker compounds from Saposhnikoviae Radix and Peucedani Japonici Radix (방풍, 식방풍의 대사체 프로파일링을 통한 지표성분 선정 및 분석법검증)

  • Choi, Bo-Ram;Yoon, Dahye;Kim, Geum-Soog;Han, Kyung-Sook;Choi, Doo Jin;Lee, Young-Seob;Hyun, Do Yoon;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.393-399
    • /
    • 2020
  • Saposhnikoviae Radix (SR) and Peucedani Japonici Radix (PR) have been used as the main traditional herbal medicines in Korea, China and Japan. In this study, ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UPLC-QTOF/MS)-based metabolomics was applied to evaluate the quality of SR and PR using the marker compounds. In the S-plot of SR and PR, 5-O-methylvisammioside and peucedanol were selected as a marker compound for SR and PR, respectively. Also, an UPLC method was established and well validated for marker compounds of SR and PR. These results suggested that the established analysis method could be used one of the good methods for the classification and quality assessment of SR and PR.

A Study on the Verification of Crashworthiness for Fuel System of Military Rotorcraft (군용 회전익항공기 연료계통 내추락성 입증에 관한 연구)

  • Sangsoo Park;Junmo Yang;Munguk Kim;Jaechul Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.16-23
    • /
    • 2023
  • The aircraft fuel system performs a number of functions such as supplying fuel, transferring fuel between fuel tanks, and measuring the amount of residual fuel in each fuel tank. Since it is a direct cause of fire hazard in crash incident, it is a must to improve survivability of crew members by designing the airframe to tolerate expected crash impact. The civil aviation authority requires intensive verification of the fuel system design to determine precise application of the airworthiness requirement. Research activity on airworthiness certification criteria and verification scheme is still insufficient, although it has a significant importance. In this paper, as part of a study to improve flight safety by developing guidelines for demonstrating fuel system crash resistance, analysis results of fuel system crash-related airworthiness certification standards, verification scheme, and cases study applicable to military rotorcraft have been reviewed.