• Title/Summary/Keyword: flight control system)

Search Result 884, Processing Time 0.027 seconds

System Identification and Stability Evaluation of an Unmanned Aerial Vehicle From Automated Flight Tests

  • Jinyoung Suk;Lee, Younsaeng;Kim, Seungjoo;Hueonjoon Koo;Kim, Jongseong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-667
    • /
    • 2003
  • This paper presents a consequence of the systematic approach to identify the aerodynamic parameters of an unmanned aerial vehicle (UAV) equipped with the automatic flight control system. A 3-2-1-1 excitation is applied for the longitudinal mode while a multi-step input is applied for lateral/directional excitation. Optimal time step for excitation is sought to provide the broad input bandwidth. A fully automated programmed flight test method provides high-quality flight data for system identification using the flight control computer with longitudinal and lateral/directional autopilots, which enable the separation of each motion during the flight test. The accuracy of the longitudinal system identification is improved by an additional use of the closed-loop flight test data. A constrained optimization scheme is applied to estimate the aerodynamic coefficients that best describe the time response of the vehicle. An appropriate weighting function is introduced to balance the flight modes. As a result, concurrent system models are obtained for a wide envelope of both longitudinal and lateral/directional flight maneuvers while maintaining the physical meanings of each parameter.

Lateral-Directional Dynamic Inversion Control Applied to Supersonic Trainer (초음속 고등훈련기 가로-방향축 모델역변환 비행제어법칙 설계)

  • Kim, Chongsup;Ji, Changho;Cho, In-Je
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.24-31
    • /
    • 2014
  • The modern version of aircrafts is allowed to guarantee the superior handing qualities within the entire flight envelope by imposing the adequate stability and flying qualities on a target aircraft through the various techniques of flight control law design. Generally, the flight control law of the aircraft in service applies the various techniques of the verified control algorithm, such as dynamic inversion and eigenstructure assignment. The supersonic trainer employs the RSS(Relaxed Static Stability) concept in order to improve the aerodynamic performance in longitudinal axis and the longitudinal control laws employ the dynamic inversion with proportional-plus-integral control method. And, lateral-directional control laws employ the blended roll system of both beta-betadot feedback and simple roll rate feedback with proportional control method in order to guarantee aircraft stability. In this paper, the lateral-directional flight control law is designed by applying dynamic inversion control technique as a different method from the current supersonic trainer control technique, where the roll rate command system is designed at the lateral axis for the rapid response characteristics, and the sideslip command system is adopted at the directional axis for stability augmentation. The dynamic inversion of a simple 1st order model is applied. And this designed flight control law is confirmed to satisfy the requirement presented from the military specification. This study is expected to contribute to design the flight control law of KF-X(Korean Fighter eXperimental) which will proceed into the full-scale development in the near future.

An Implementation of Formation Flight Control System Using Two Drones (두 대의 드론을 이용한 편대 비행 제어 시스템 구현)

  • Kim, Dong-Jin;Park, Young-Seak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.343-351
    • /
    • 2016
  • In this study, we implemented a formation flight control system using two drones. Ground control system communicates with drones by MAVLink protocol, does keep watch on drone's status and sends simultaneously formation flight instructions to drones in real time. Two drones have been able to fly by a formation flight algorithm without crashing while maintaining the same speed, and a constant distance and altitude.

Development of Operation Network System and Processor in the Loop Simulation for Swarm Flight of Small UAVs (소형 무인기들의 군집비행을 위한 운영 네트워크 시스템과 PILS 개발)

  • Kim, Sung-Hwan;Cho, Sang-Ook;Cho, Seong-Beom;Park, Choon-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.433-438
    • /
    • 2012
  • In this paper, a operation network system equipped with onboard wireless communication systems and ground-based mission control systems is proposed for swarm flight of small UAVs. This operating system can be divided into two networks, UAV communication network and ground control system. The UAV communication network is intend to exchange the informations of navigation, mission and flight status with minimum time delay. The ground control system consisted of mission control systems and UDP network. Proposed operation network system can make a swarm flight of various UAVs, execute complex missions decentralizing mission to several UAVs and cooperte several missions. Finally, PILS environments are developed based on the total operating system.

무인항공기의 각속도 기반 자동비행제어시스템 개발

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Gi;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.7-14
    • /
    • 2005
  • This paper describes development of automatic flight control system for an unmanned target drone. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed. The performance of automatic flight control system is verified by flight test.

  • PDF

Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

  • Park, Sang-Wook;Lee, Young-Ran;Lee, Byoung-Sun;Hwang, Yoo-La;Galilea, Javier Santiago Noguero
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.635-642
    • /
    • 2009
  • This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator's tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system's quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

Model Following flight Control System Design (준 슬라이딩 모드 제어 기법을 이용한 모델 추종 비행제어 시스템 설계)

  • Choe, Dong-Gyun;Kim, Shin;Kim, Jong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1133-1145
    • /
    • 2000
  • In this paper a model following flight control system design using the discrete time quasi-sliding mode control method is described. The quasi-sliding mode is represented as the sliding mode band, not as the sliding surface. The quasi-sliding mode control is composed of the equivalent control for the nominal system without uncertainties and disturbances and the additive control compensating the uncertainties and disturbances. The linearized plant on the equilibrium point is used in designing a flight control system and the stability conditions are proposed for the model uncertainties. Pseudo-state feedback control which uses the model variables for the unmeasured states is proposed. The proposed method is applied to the design of the roll attitude and pitch load factor control of a bank-to-turn missile. The performance is verified through the nonlinear six degrees of freedom flight simulation.

  • PDF

A Study on the Design and Validation of Switching Mechanism in Hot Bench System-Switch Mechanism Computer Environment (HBS-SWMC 환경에서의 전환장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Ahn, Jong-Min;Lee, Dong-Kyu;Park, Sang-Seon;Park, Sung-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.711-719
    • /
    • 2008
  • Although non-real time simulation and pilot based evaluations are available for the development of flight control computer prior to real flight tests, there are still many risky factors. The control law designed for prototype aircraft often leads to degraded performance from the initial design objectives, therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS(In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV(High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA(Variable stability. In flight Simulation Test Aircraft) programs. This paper addresses the concept of switching mechanism for FLCC(Flight Control Computer)-SWMC(Switching Mechanism Computer) using 1553B communication based on flight control law of advanced supersonic trainer. And, the fader logic of TFS(Transient Free Switch) and stand-by mode of reset '0' type are designed to reduce abrupt transient and minimize the integrator effect in pitch axis control law. It hans been turned out from the pilot evaluation in real time that the aircraft is controllable during the inter-conversion process through the flight control computer, and level 1 handling qualities are guaranteed. In addition, flight safety is maintained with an acceptable transient response during aggressive maneuver performed in severe flight conditions.

Development of Automatic flight Control System for Low Cost Unmanned Aerial Vehicle (저가형 무인 항공기의 자동비행시스템 개발)

  • Yoo, Hyuk;Lee, Jang-Ho;Kim, Jae-Eun;An, Yi-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2004
  • Automatic flight control system (AFCS) for a low-cost unmanned aerial vehicle is described in this paper. Development process and block diagram of the AFCS are introduced. The flight control law for longitudinal and lateral channel autopilot is designed using optimization process. In this procedure, the performance index is composed of desired location of closed loop system poles and H$_2$norm of the resultant flight control system. This procedure is applied to the autopilot design of an unmanned target vehicle. Performance of the AFCS is evaluated by processor-in-the-loop simulation test and flight test. These results show that the AFCS has acceptable performance fur low cost UAV.

Design of Flight Control System for KARI Unmanned Airship (50m급 중고도 무인 비행선의 자동비행시스템 설계)

  • 김성필;주광혁;안이기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2004
  • The flight control system designed for an unmanned airship, which is under development by KARI, is in reduced. First, the dynamic characteristics of the airship are addressed, which are fairly different from those of the nominal aircraft. In order to implement autonomous flight for the unmanned airship, flight control logic is designed including autopilot and guidance law. The autopilot is designed under consideration of the velocity region of the unmanned airship. The guidance laws are implemented in main operational modes such as point navigation, station keeping and spiral up/down for emergency return. Their simulation results are also presented in order to validate performances of the flight control system.