• Title/Summary/Keyword: flexural-flow

Search Result 150, Processing Time 0.028 seconds

Investigation of the Jetting Phenomena in Injection Molding for Various Injection Speeds, Resins and Mold Shapes (사출성형에서 사출속도, 수지의 종류 및 금형 형상에 따른 젯팅 현상에 관한 고찰)

  • 류민영;최종근;배유리
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.3-10
    • /
    • 2003
  • The formation of surface defects associated with Jotting in injection molding is related to the geometries of cavity and fate, operational conditions and the rheological properties of polymer. In this study we have examined jetting phenomena in injection molding process for the throe kinds of PCs which have different molecular weights and structures, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes those are tensile, flexural and impact test specimens with various gates and cavity thicknesses. Through this study we have observed that the jetting is related to the dic swell of material. This means that the jotting is strongly affected by the elastic flow property rather than the viscous flow property in viscoelastic characteristics of molten polymer. Different resins have different elastic properties, and elastic flow behavior depends on the shear rate of flow, i.e. injection speed. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mole design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting regardless of amount of elasticity of polymer melt.

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • Kil, H.G.;Choi, J.S.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.301-308
    • /
    • 2000
  • The power flow analysis(PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrry direction. The energy governing equations for longitudinal, shear and flexural waves were solved to predict the vibrational energy density and intensity. The wave transmission approach was used to consider the mode conversion at the joints of the coupled plates. Numerical results for energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

A Study on the Influence of the Physical Properties of Mortar on Surface Shape of Crushed Sand (부순모래의 표면형상이 모르터의 물성에 미치는 영향)

  • 이승한;김종인;윤용호;한형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.51-56
    • /
    • 1997
  • This study is aimed for investigating the influence of mortar on improved of surface shape of crushed sand, and analyzing the physical properties of fresh state and hardened state. By the test results, it was found that the flow value and bleeding ratio was increased, but the change of flow value according to time was decreased with the improved surface shape of crushed sand. Also, comparing improved of surface shape of crushed sand with not improved of surface shape of crushed sand on strength, compressive strength is about the same and flexural strength decrease in case of improved of surface shape of crushed sand.

  • PDF

Mechanical properties of composite resins for dental restorative (치과 수복재용 복합레진의 기계적 물성에 대한 연구)

  • Ryu, Ho-Nam;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.31-34
    • /
    • 2015
  • The purpose of the study was to investigate the mechanical properties (diametral tensile strength, flexural strength, compressive strength, Vickers hardness) of 4 kinds of composit resins; Bis-GMA based composit, Bis-EMA based composit, Bis-GMA/UDMA based composit, and Bis-EMA/UDMA based composit, The composit resin based Bis-GMA showed stronger mechanical properties than Bis-EMA. It was found that the addition of UDMA to both Bis-GMA based composit and Bis-EMA based composit highly improved mechanical properties. However, the mechanical properties of the composit resins prepared in this study were lower than those of the commercialized products in market(Charmfil flow(Denkist), Quadrant flow(CAVEX)), since the composit resins prepared in this study has much lower inorganic filler content of 43wt% comparing with 50~70wt% inorganic filler content of the commercialized products.

  • PDF

The Dynamics Performance Evaluation for Type of Replacement Ratio of the Polysilicon Sludge and Fly ash (폴리실리콘 슬러지와 플라이애쉬 치환율별 역학성능 평가)

  • Moon, Ji-Hwan;Park, Jong-Pil;Kim, Gyu-Yong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.85-86
    • /
    • 2012
  • This application plan is hasty prepared with the actual condition in which the majority is reclaimed by the waste with the marine and the polysilicon sludge, that is the main raw material of the solar pannel support, does. In this research, by using OPC and Fly ash, the applicability as the blending material of the polysilicon sludge was analyze and it tried to contribute to the waste reduction afterward. The replacement ratio of the sludge was set to 5. 10, 15, 20(%) with the experiment based on the based test result and the air flow rate, liquidity, flexural strength, and compressive strength was measured. The liquidity was reduced in spite of as the replacement ratio of the sludge increased and the air flow rate increased.

  • PDF

The Basic Study on the Site Application of the Underwater-Hardening Epoxy Mortar Using RCSS (급냉 제강 슬래그를 이용한 에폭시 수지 모르타르 현장 적용에 관한 기초적 연구)

  • Kawg Eun-Gu;Kang Gee-Woong;Bae Dae-Kyung;Bae Kee-Sun;Chang Won-Seok;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.405-408
    • /
    • 2005
  • The repair and reinforcement materials of the concrete structure in underwater is use to epoxy mortar for underwater-harding. Because it ensures the separation of material and a fluidity in construction, it is important to epoxy mortar This study dealt with the influence of the using of rapidly-chilled steel slag on flow, nozzle passing time, viscosity, and strength of mortar by experimental design. As results of study, this paper proved that the more the using rate of rapidly chilled steel slag increased, the more this affected the enhancement of flow, the decrease of O-lot, and the development of compressive strength, flexural strength. Also, considering the fluidity, nozzle passing time and strength of mortar, it is desirable to use RCSS300 of rapidly chilled slag.

  • PDF

Vibration analysis of 2300 TEU container ship using power flow analysis program in medium-to-high frequency ranges (파워흐름해석 프로그램을 이용한 2300 TEU 컨테이너선의 중고주파 대역 진동해석)

  • 서성훈;박영호;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1061-1066
    • /
    • 2001
  • To predict vibrational energy density and intensity of beam-plate coupled complex structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for plate, beam and some coupled structural elements are developed. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-couped plates are fully developed. Also the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint elements. Using the developed PFFEM program, vibration analysis for 2300TEU container ship model is performed and here the model data for this program are obtained by converting fonner FE model for structural analysis. This program predicts successfully the vibrational energy density and intensity upto 8,000 Hz for the ship model with over 50,000 DOF.

  • PDF

Elaboration and characterization of fiber-reinforced self-consolidating repair mortar containing natural perlite powder

  • Benyahia, A.;Ghrici, M.;Mansour, M. Said;Omran, A.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • This research project aimed at evaluating experimentally the effect of natural perlite powder as an alternative supplementary cementing material (SCM) on the performance of fiber reinforced self-consolidating repair mortars (FR-SCRMs). For this purpose, four FR-SCRMs mixes incorporating 0%, 10%, 20%, and 30% of natural perlite powder as cement replacements were prepared. The evaluation was based on fresh (slump flow, flow time, and unit weight), hardened (air-dry unit weight, compressive and flexural strengths, dynamic modulus of elasticity), and durability (water absorption test) performances. The results reveal that structural repair mortars confronting the performance requirements of class R4 materials (European Standard EN 1504-3) could be designed using 10%, 20%, and 30% of perlite powder as cement substitutions. Bonding results between repair mortars containing perlite powder and old concrete substrate investigated by the slant shear test showed good interlocking justifying the effectiveness of these produced mortars.

Study of structural properties and development of high strength Cured-In-Place Pipe (CIPP) liner for sewer pipes using glass fiber (유리섬유를 이용한 하수관의 고강도 현장경화 비굴착 보수 공법 재료의 개발 및 물성 특성 연구)

  • Ji, Hyon Wook;Koo, Dan Daehyun;Yoo, Sung Soo;Kang, Jeong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.149-159
    • /
    • 2020
  • Cured-in-place-pipe(CIPP) is the most adopted trenchless application for sewer rehabilitation to extend the life of the existing sewer without compromising both direct construction and indirect social costs especially applied in the congested urban area. This technology is globally and domestically known to be the most suitable for partial and full deteriorated pipe structure rehabilitation in a sewer system. The typical design of CIPP requires a significant thickness of lining to support loading causing sewage flow interruption and increasing material cost. This paper presents development of a high strength glass fiber composite lining material for the CIPP application and structural test results. The test results exhibit that the new glass fiber composite lining material has 12 times of flexural strength, 6.2 times of flexural modulus, and 0.5 Creep Retention Factor. These test results can reduce lining design thickness 35% at minimum. Even though taking into consideration extra materials such as outer and inner films for actual field applications, the structural capacity of the composite material significantly increases and it reduces 20 percent or more line thickness as compared to the conventional CIPP. We expect that the newly developed CIPP lining material lowers material costs and minimizes flow capacity reduction, and fully replaceable to the conventional CIPP lining materials.

Hydration Heat and Strength Characteristics of Cement Mortar with Phase Change Materials(PCMs) (상전이물질을 혼입한 시멘트 모르타르의 수화발열 및 강도 특성 평가)

  • Jang, Seok-Joon;Kim, Byung-Seon;Kim, Sun-Woong;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.665-672
    • /
    • 2016
  • This study is conducted to investigate the effect of phase change materials (PCM) on hydration heat and strength characteristics of cement mortar. Two types of Barium and Strontium-based PCMs were used in this study and the addition ratio of each PCM to the cement mortar ranged from 1% to 5% by cement weight. Flow test, semi-adiabatic temperature rise test, compressive strength and flexural strength test were carried out to examine the PCM effect on heat and mechanical properties of cement mortar. Test results indicated that PCMs used in this study were effective to control hydration heat of cement mortar, and Barium-based PCM slightly reduce flow value. The compressive and flexural strength of cement mortar with PCM decreased with increasing the adding mount of PCM. The prediction model for compressive strength of cement mortar with different addition levels of PCMs are suggested in this study.