• 제목/요약/키워드: flexural strength analysis

검색결과 799건 처리시간 0.024초

Effects of relining materials on the flexural strength of relined thermoplastic denture base resins

  • Sun, Yunhan;Song, So-Yeon;Lee, Ki-Sun;Park, Jin-Hong;Ryu, Jae-Jun;Lee, Jeong-Yol
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권5호
    • /
    • pp.361-366
    • /
    • 2018
  • PURPOSE. The aim of this study was to evaluate the effects of relining materials on the flexural strength of relined thermoplastic denture base resins (TDBRs). MATERIALS AND METHODS. For shear bond strength testing, 120 specimens were fabricated using four TDBRs (EstheShot-Bright, Acrytone, Valplast, Weldenz) that were bonded with three autopolymerizing denture relining resins (ADRRs: Vertex Self-Curing, Tokuyama Rebase, Ufi Gel Hard) with a bond area of 6.0 mm in diameter and were assigned to each group (n=10). For flexural strength testing, 120 specimens measuring $64.0{\times}10.0{\times}3.3mm$ (ISO-1567:1999) were fabricated using four TDBRs and three ADRRs and were assigned to each group (n=10). The thickness of the specimens measured 2.0 mm of TDBR and 1.3 mm of ADRR. Forty specimens using four TDBRs and 30 specimens using ADRRs served as the control. All specimens were tested on a universal testing machine. For statistical analysis, Analysis of variance (ANOVA) with Tukey's test as post hoc and Spearman's correlation coefficient analysis (P=.05) were performed. RESULTS. Acry-Tone showed the highest shear bond strength, while Weldenz demonstrated the lowest bond strength between TDBR and ADRRs compared to other groups. EstheShot-Bright exhibited the highest flexural strength, while Weldenz showed the lowest flexural strength. Relined EstheShot-Bright demonstrated the highest flexural strength and relined Weldenz exhibited the lowest flexural strength (P<.05). Flexural strength of TDBRs (P=.001) and shear bond strength (P=.013) exhibited a positive correlation with the flexural strength of relined TDBRs. CONCLUSION. The flexural strength of relined TDBRs was affected by the flexural strength of the original denture base resins and bond strength between denture base resins and relining materials.

Full Zirconia Crown용으로 사용되는 block의 제조사의 굴곡강도와 임상작업후의 굴곡강도에 관한 연구 (The Study of Flexural Strength of Full Zirconia Crown using Block after Clinical Work)

  • 정효경;곽동주
    • 대한치과기공학회지
    • /
    • 제33권4호
    • /
    • pp.283-289
    • /
    • 2011
  • Purpose: The purpose of this study was to evaluate flexural strength of full zirconia crown using block after clinical work. Methods: The three point bending test was used to measure the flexural strength of zirconia block. Statistical analysis was done using the Statistical Package for Social Sciences version 19.0 for Windows. As for the analysis methods, the study used analysis of variance, Tukey's test. Results: The ave Rage value of flexural strengths of WIELAND, Zirkonzahn, Hass, D-MAX were 516.2 MPa, 612.6MPa, 566.2MPa, 744.6MPa. The ave Rage value of Surface Roughness of WIELAND, Zirkonzahn, Hass, D-MAX were 0.39Ra, 0.33Ra, 0.33Ra, 0.47Ra. Conclusion: Flexural strength of zirconia block decreased after clinical work. Flexural strength of zirconia block is equal to or higher than flexural strength of dental metal, so zirconia block can be used as dental material.

탄소섬유시트로 보강된 RC보의 해석 및 설계 프로그램 개발 (Analysis and Design Programming of RC Beams Strengthened with Carbon Fiber Sheets)

  • 김성도;김성수
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.319-325
    • /
    • 2004
  • In this study, analysis and design programs of bending of RC beams strengthened with fiber sheets are developed by using Visual Basic Language. The program consists two groups, ultimate strength method and nonlinear flexural analysis method. Ultimate strength method regards concrete compressive stress as a rectangular stress block and do not consider tensile stress of concrete and load-deflection curves. On the other hand, nonlinear flexural analysis considers tensile stress of concrete, load-deflection curves, state of stress distribution and failure strain of strengthening material. Also, the analysis method used in this study regards nonlinear flexural stress as compressive stress of concrete. This program can be a good tool for determining the bending strength of strengthened RC beams and estimating the amount of fiber sheets for practical use.

SFRC구조물의 휨거동에 관한 해석적 연구 (Analytical Study of Flexural Behavior on Steel Fiber Reinforced Concrete Structure)

  • 서성탁
    • 한국산업융합학회 논문집
    • /
    • 제11권1호
    • /
    • pp.35-40
    • /
    • 2008
  • Various characters of the concrete are greatly improved as the effect of the steel fiber. As the improvement effect of the steel fiber, the increment in flexural strength, shear strength, toughness, and impact strength are remarkable, and tenacious concrete is obtained. This paper presents model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus and tensile strength were performed with self-made cylindrical specimens of variable aspect ratios. This paper presents an analytical study on the behavior of a beam specimen with steel fiber reinforced concrete(SFRC). The effect of the SFRC on the crack pattern, failure mode and the flexural behavior of the structure were investigated. The analysis model based on the nonlinear layered finite element method was successfully able to find the necessary amount of steel fibers, tensile steels and beam section which can best approximate flexural strength and ductility of a given conventionally reinforced concrete beam.

  • PDF

Flexural and shear behavior of large diameter PHC pile reinforced by rebar and infilled concrete

  • Bang, Jin-Wook;Lee, Bang-Yeon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.75-81
    • /
    • 2020
  • The purpose of this paper is to provide an experimental and analytical study on the reinforced large diameter pretensioned high strength concrete (R-LDPHC) pile. R-LDPHC pile was reinforced with infilled concrete, longitudinal, and transverse rebar to increase the flexural and shear strength of conventional large diameter PHC (LDPHC) pile without changing dimension of the pile. To evaluate the shear and flexural strength enhancement effects of R-LDPHC piles compared with conventional LDPHC pile, a two-point loading tests were conducted under simple supported conditions. Nonlinear analysis on the basis of the conventional layered sectional approach was also performed to evaluate effects of infilled concrete and longitudinal rebar on the flexural strength of conventional LDPHC pile. Moreover, ultimate strength design method was adopted to estimate the effect of transverse rebar and infilled concrete on the shear strength of a pile. The analytical results were compared with the results of the bending and shear test. Test results showed that the flexural strength and shear strength of R-LDPHC pile were increased by 2.3 times and 3.3 times compared to those of the conventional LDPHC pile, respectively. From the analytical study, it was found that the flexural strength and shear strength of R-LDPHC pile can be predicted by the analytical method by considering rebar and infilled concrete effects, and the average difference of flexural strength between experimental results and calculated result was 10.5% at the ultimate state.

이형 콘크리트 블록의 강도 평가방법에 관한 연구 (Development of A Strength Test Method for Irregular Shaped Concrete Block Paver)

  • 임무광;박대근;류성우;조윤호
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.11-18
    • /
    • 2014
  • PURPOSES : This study aims to develop a strength test method for irregularly shaped concrete block paver. METHODS : Ten (10) different types of concrete block pavers including porous and dense blocks were tested for strength capacities. Destructive and non-destructive methods were used to develop a strength test method for irregularly shaped concrete block paver. The flexural strength evaluation was conducted in accordance to KS F 4419, while compressive strength was conducted with a 45.7mm-diameter core specimen. The impact echo test method was used to evaluate the elastic modulus. Finally, regression analysis was used to investigate the relationship between flexural strength, compressive strength and elastic modulus based on their corresponding test results. RESULTS : The flexural strength of the tested block pavers ranged from 4MPa to 10MPa. At 95% confidence level, the coefficients of determination between compressive-flexural strength relationship and compressive strength-elastic modulus relationship were 0.94 and 0.84, respectively. These coefficients signified high correlation. CONCLUSIONS : Using the test method proposed in this study, it will be easier to evaluate the strength of irregularly shaped concrete block pavers through impact echo test and compressive test, instead of the flexural test. Relative to the flexural strength requirement of 5MPa, the minimum values of compressive strength and elastic modulus, as proposed, are 13.0MPa and 25.0GPa, respectively.

지르코니아 전장 세라믹의 파절강도에 관한 비교 연구 (Comparative Study in Fracture Strength of Zirconia Veneering Ceramics)

  • 이정환;안재석
    • 치위생과학회지
    • /
    • 제10권5호
    • /
    • pp.335-340
    • /
    • 2010
  • This study was performed to evaluate the fracture strength of the dental zirconia veneering ceramics for zirconia ceramic core. Six commercial zirconia veneering ceramics were used in this study, namely E-Max(Ivoclar vivadent, Inc, Liechtenstein), Creation ZI(KLEMA Dental produckte GmbH, Austria), Cercon ceram kiss(Degudent, GmbH, Hanau-Wolfgang, Germany), Triceram(Dentaurum, Ispringen, Germany), Zirkonzahn(Zirkonzahn GmbH, Italy), Zirmax(Alpadent, korea). All samples were prepared according to the relevant instructions of manufacture. Disc specimens were prepared to the final dimensions of 17 mm in diameter and 1.5 mm in thickness. The biaxial flexure strength test was conducted using a ball-on-three-ball method. All specimens were tested in a moisture-free environment. Average flexural strengths were analyzed with Weibull analysis and one-way analysis of variance(ANOVA). Significant differences were founded between the mean flexural strength values of five commercials zirconia veneering ceramics and the other. The flexural strengths and Weibull modulus were similar to those of five groups E-Max(EM), Creation ZI(CR), Cercon ceram kiss(CE), Triceram(TR), Zirkonzahn(ZI) with the exception of Zirmax(ZM). The biaxial flexural strength from Cercon ceram kiss(CE) was higher than those of other groups. Fracture analysis showed similar results for these five groups.

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.

탄소보강근의 제조 조건에 따른 휨강도와 기공 특성과의 상관성 분석 (Analysis of Correlation between Flexural Strength and Pore Characteristics on CFRP Rebar as Fabrication Method)

  • 김남일;권도영;추용식
    • Composites Research
    • /
    • 제35권5호
    • /
    • pp.328-333
    • /
    • 2022
  • 본 연구에서는 CFRP rebar의 휨강도와 기공 특성과의 상관성을 도출하기 위해 CFRP rebar의 제조 조건을 제어하였다. 이때 CFRP rebar의 제조 조건은 리브 유무, 수지 온도 및 경화로 온도 등을 조정하였으며, 제조된 CFRP rebar의 휨강도와 기공특성을 분석하였다. CFRP rebar의 휨강도는 리브 유무, 경화로 온도 및 수지 온도 등, 제조 조건에 따라 변화되었다. 특히 리브가 감겨지지 않은 경우, CFRP rebar의 휨강도 값이 크게 낮아진다는 것도 확인하였다. Nano X-Ray CT 분석 결과, 수지 온도가 60℃인 CFRP rebar에서 최대 기공 지름을 나타내었다. 광학현미경 분석 결과, 최대 기공율은 No. 1에서 6.89%, 최소 기공율은 No. 7의 2.88%이었다. 광학현미경을 통한 기공율과 휨강도의 상관관계계수는 -0.64이었으며, 이는 Nano X-Ray CT 기공율 및 기공크기와의 상관관계계수 보다 높은 값이었다.

Seismic behavior of high-strength concrete flexural walls with boundary elements

  • Kim, Seung-Hun;Lee, Ae-Bock;Han, Byung-Chan;Ha, Sang-Su;Yun, Hyun-Do
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.493-516
    • /
    • 2004
  • This paper addresses the behavior and strength of structural walls with a concrete compressive strength exceeding 69 MPa. This information also enhances the current database for improvement of design recommendations. The objectives of this investigation are to study the effect of axial-load ratio on seismic behavior of high-strength concrete flexural walls. An analysis has been carried out in order to assess the contribution of deformation components, i.e., flexural, diagonal shear, and sliding shear on total displacement. The results from the analysis are then utilized to evaluate the prevailing inelastic deformation mode in each of wall. Moment-curvature characteristics, ductility and damage index are quantified and discussed in relation with axial stress levels. Experimental results show that axial-load ratio have a significant effect on the flexural strength, failure mode, deformation characteristics and ductility of high-strength concrete structural walls.