• Title/Summary/Keyword: flexural peeling

Search Result 11, Processing Time 0.019 seconds

Retrofitting by adhesive bonding steel plates to the sides of R.C. beams. Part 1: Debonding of plates due to flexure

  • Oehlers, Deric. J.;Nguyen, Ninh T.;Bradford, Mark A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.491-504
    • /
    • 2000
  • A convenient method for enhancing the strength and stiffness of existing reinforced concrete beams is to bond adhesively steel plates to their tension faces. However, there is a limit to the applicability of tension face plating as the tension face plates are prone to premature debonding and, furthermore, the addition of the plate reduces the ductility of the beam. An alternative approach to tension face plating is to bond adhesively steel plates to the sides of reinforced concrete beams, as side plates are less prone to debonding and can allow the beam to remain ductile. Debonding at the ends of the side plates due to flexural forces, that is flexural peeling, is studied in this paper. A fundamental mathematical model for flexural peeling is developed, which is calibrated experimentally to produce design rules for preventing premature debonding of the plate-ends due to flexural forces. In the companion paper, the effect of shear forces on flexural peeling is quantified to produce design rules that are applied to the strengthening and stiffening of continuous reinforced concrete beams.

Non-Linear FEM Analysis Study of the Peeling Failure of the RC Beams Strengthened by GFRP (유리섬유쉬트로 휨보강한 보의 박리파괴 거동에 관한 비선형 FEM 해석)

  • 강인석;최기선;유영찬;김긍환;이한승;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.335-338
    • /
    • 2003
  • Flexural test and parametric study by FEM analysis on 6.0m long reinforced concrete beams strengthened by GFRP are reported in these tests. The selected variables are strengthened plate length, plate thickness. The effects of these variables are discussed. The results generally indicate that the flexural strength of strengthened beams is increased. The results of FEM analysis show that the more strengthening GFRP is the more stress of GFRP is decrease when failure mode is peeling failure.

  • PDF

Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams (탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향)

  • Shin, Sung Woo;Bahn, Byong Youl;Ahn, Jong Mun;Cho, In Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.195-201
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows ; The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS is increased, the ductility of RC beams is increased because of delaying the peeling of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFS is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

Retrofitting by adhesive bonding steel plates to the sides of R.C. beams. Part 2: Debonding of plates due to shear and design rules

  • Oehlers, Deric. J.;Nguyen, Ninh T.;Bradford, Mark A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.505-518
    • /
    • 2000
  • A major cause of premature debonding of tension face plates is shear peeling (Jones et al. 1988, Swamy et al. 1989, Ziraba et al. 1994, Zhang et al. 1995), that is debonding at the plate ends that is associated with the formation of shear diagonal cracks that are caused by the action of vertical shear forces. It is shown in this paper how side plated beams are less prone to shear peeling than tension face plated beams, as the side plate automatically increases the resistance of the reinforced concrete beam to shear peeling. Tests are used to determine the increase in the shear peeling resistance that the side plates provide, and also the effect of vertical shear forces on the pure flexural peeling strength that was determined in the companion paper. Design rules are then developed to prevent premature debonding of the plate ends due to peeling and they are applied to the strengthening and stiffening of continuous reinforced concrete beams. It is shown how these design rules for side plated beams can be adapted to allow for propped and unpropped construction and the time effects of creep and shrinkage, and how side plates can be used in conjunction with tension face plates.

An Experimental Study to Prevent Debonding Failure of Full-Scale RC Beam Strengthened with Multi-Layer CFS

  • You Young-Chan;Choi Ki-Sun;Kim Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.867-873
    • /
    • 2004
  • It has been known that debonding failures between CFS(Carbon Fiber Sheet) and concrete in the strengthened RC beams are initiated by the peeling of the sheets in the region of combined large moment and shear forces, being accompanied by the large shear deformation after flexural cracks. These shear deformation effects are seldom occurred in small-scale model tests, but debondings due to the large shear deformation effects are often observed in a full-scale model tests. The premature debonding failure of CFS, therefore, must be avoided to confirm the design strength of full-scale RC beam in strengthening designs. The reinforcing details, so- called 'U-Shape fiber wrap at mid-span' which wrapped the RC flexural members around the webs and tension face at critical section with CFS additionally, were proposed in this study to prevent the debonding of CFS. Other reinforcing detail, so called 'U-Shape fiber wrap at beam end' were included in this tests and comparisons were made between them.

Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams (탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향)

  • 신성우;반병렬;안종문;조인철;김영수;조삼재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.579-584
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows. The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFA is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

Effect of Anchorage Type of CFS on Flexural Behavior of RC Beams (탄소섬유쉬트의 정착 보강방법이 RC보의 휨거동에 미치는 영향)

  • Shin, Sung Woo;Bahn, Byong Youl;Lee, Kwang Soo;Cho, In Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.202-208
    • /
    • 1998
  • To investigae the effect of anchorage type of carbon fiber sheet (CFS) on flexural behavior of RC beams, the loading test of RC beams reinforced with CFS was conducted in variable of anchorage Type such as bolting anchorage and U type anchorage using CFS. This study can be summarized as follows ; It is confirmed experimentally that the bolting anchorage and U type anchorage with CFS is very effective to delay the bond failure and prevent the peeling of CFS. Also, the anchorage type applied with this study is very effective to improve the ductility compared with the improving of maximum flexural strength of RC beams. It is believed that the anchorage type used this study must secure the ductile capacity of above 3 for the flexural strengthening of RC beams. In the future, it is required to obtain the data about anchorage type of CFS for utilization of field work as well as investigate the ductile capacity of conventional study of anchorage type

  • PDF

Retrofitting of shear damaged RC beams using CFRP strips

  • Altin, Sinan;Anil, Ozgur;Toptas, Tolga;Kara, M. Emin
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.207-223
    • /
    • 2011
  • The results of an experimental investigation are presented in this paper for retrofitting of shear damaged reinforced concrete beams by using U shaped CFRP strips. The experimental program is consisted of seven shear deficient T cross sectioned 1/2 scale simply supported beam specimens. One beam was used as reference specimen, and the remaining six specimens were tested in two stages. At the first stage, specimens were shear damaged severely, and then were retrofitted by using CFRP strips with or without fan type anchorages. Finally, retrofitted beams were tested up to failure. Three different CFRP strip spacing were used such as 125 mm, 150 mm, and 200 mm. The effect of anchorages on shear strength and behavior of the retrofitted specimens is investigated. CFRP strips without anchorages improved the shear strength, but no flexural failure mode was observed. Specimens showed brittle shear failure due to peeling of CFRP strip from RC beam surface. Shear damaged specimens retrofitted with anchoraged CFRP strips showed improved shear strength and ductile flexural failure. Maximum strains at anchoraged strips were approximately 68% larger than that of strips without anchorages.

Failure of RC Slabs Strengthened with CFRP Plate (탄소섬유판으로 보강한 철근콘크리트 슬래브의 파괴)

  • Kim, Joong-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.245-251
    • /
    • 1999
  • Carbon fibre reinforced plastic(CFRP) plate is one of the alternative materials for strengthening of reinforced and prestressed concrete members due to excellent strength and light weight. In this paper, the behavior of slabs strengthened with CFRP plate is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear force appear in same position. The failure mode is a peeling-off of the CFRP plate due to flexural-shear crack. This is observed near the loading points with thick plates. Because of this failure mode, thickness of CFRP plates does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When large moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened slab and moment of unstrengthened slab is proposed 1.5-2.0.

  • PDF

A Study on Structural Performance Evaluation of RC Beams Strengthened with CFRP Plate (탄소섬유판으로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.212-217
    • /
    • 2004
  • Carbon fiber reinforced plastic(CFRP) plate Is one of the alterative materials for soengthening of reinforced and prestressed connote members due to excellent strength and light weight In this paper, the behavior of beams strengthened with CFRP plate and CFS(Carbon fiber sheet) is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear lone appear in same position. The main failure mode is a peeling-off of the CFRP plate near the loading points due to flexural-shear crack, Because of this failure mode, failure load is not linearly proportional to the thickness of CFRP plates. When beam is wrapped with CFS around oかy loading point it does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When line moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened beam and moment of unstrengthened beam is proposed 1.5-2.0. In order to use the plate of thicker than 6mm, CFS may be extended to the location which moment of strengthened beam is 1.5 times than moment of unstrengthened beam.