• Title/Summary/Keyword: flexural load

Search Result 1,218, Processing Time 0.023 seconds

Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam According to Reinforcement Amounts (인장철근배근량에 따른 U-플랜지 트러스 복합보의 휨 내력에 관한 실험연구)

  • Oh, Myoung Ho;Park, Sung Jin;Kim, Young Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.33-40
    • /
    • 2021
  • For the practical application of U-flanged Truss Hybrid beams, the flexural capacity of hybrid beams with end reinforcement details using vertical steel plates was verified. The bending test of U-flanged Truss Hybrid beams was performed using the same top chord under the compressive force, but with the thickness of the bottom plate and the amount of tensile reinforcement. The initial stiffness and maximum load of the specimen with tensile reinforcement have a higher value than that of the specimen without tension reinforcement, but the more tensile reinforcement, the greater the load decrease after the maximum load. In the case of the specimen with tensile reinforcement, because the test result value is 76% to 88% when compared with the flexural strength according to Korea Design Code, the safety of the U-flanged Truss Hybrid beam with the same details of the specimens can't ensure. Therefore, the development of new details is required to ensure that the bottom steel plate and the tensile reinforcement can undergo sufficient tensile deformation.

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.

The Effect of Longitudinal Steel Ratio on Flexural Behavior of Reinforced High Strength Concrete Beams (주철근비에 따른 고강도 콘크리트 보의 휨거동)

  • 김진근;박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.71-76
    • /
    • 1994
  • Eight singly reinforced high strength concrete beams were tested to investigate their flexural behavior. The variable is tensile steel raio. The test results are presented in terms of load-deformation behavior, ductility indexes, and cracking patterns. The flexural strengths obtained experimentally are compapred to the analytical results, and good agreements are obtained. The flexural design provisions of the ACI Building Code are found to be adequate to predict the strength of reinforced high-strength concrete beams.

  • PDF

Post-fire flexural behavior of functionally graded fiber-reinforced concrete containing rubber

  • Nematzadeh, Mahdi;Mousavi, Reza
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.417-435
    • /
    • 2021
  • The optimal distribution of steel fibers over different layers of concrete can be considered as an appropriate method in improving the structural performance and reducing the cost of fiber-reinforced concrete members. In addition, the use of waste tire rubber in concrete mixes, as one of the practical ways to address environmental problems, is highly significant. Thus, this study aimed to evaluate the flexural behavior of functionally graded steel fiber-reinforced concrete containing recycled tire crumb rubber, as a volume replacement of sand, after exposure to elevated temperatures. Little information is available in the literature regarding this subject. To achieve this goal, a set of 54 one-, two-, and three-layer concrete beam specimens with different fiber volume fractions (0, 0.25, 0.5, 1, and 1.25%), but the same overall fiber content, and different volume percentages of the waste tire rubber (0, 5, and 10%) were exposed to different temperatures (23, 300, and 600℃). Afterward, the parameters affecting the post-heating flexural performance of concrete, including flexural strength and stiffness, toughness, fracture energy, and load-deflection diagrams, along with the compressive strength and weight loss of concrete specimens, were evaluated. The results indicated that the flexural strength and stiffness of the three-layer concrete beams respectively increased by 10 and 7%, compared to the one-layer beam specimens with the same fiber content. However, the flexural performance of the two-layer beams was reduced relative to those with one layer and equal fiber content. Besides, the flexural strength, toughness, fracture energy, and stiffness were reduced by approximately 10% when a 10% of natural sand was replaced with tire rubber in the three-layer specimens compared to the corresponding beams without crumb rubber. Although the flexural properties of concrete specimens increased with increasing the temperature up to 300℃, these properties degraded significantly with elevating the temperature up to 600℃, leading to a sharp increase in the deflection at peak load.

Effective CFRP retrofit strategy for flexural deficient RC beams

  • Banjara, Nawal Kishor;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.163-175
    • /
    • 2019
  • Structural deterioration arises due to aging, environmental effects, deficiencies during design and construction phase, and overloading. Experimental and numerical investigations are carried out in this study to evaluate the performance of control and flexural deficient reinforced concrete (RC) beams under monotonic loading. Three levels of flexural deficiency are considered in this study. After confirming load carrying capacities of control and flexural deficient beams, the flexural deficient RC beams are strengthened with carbon fibre reinforced polymer (CFRP) fabric. CFRP strengthened RC beams are tested under monotonic loading and compared with the performance of control specimen. Further, non-linear finite element analyses are also carried out to evaluate the flexural performance of control, deficient and CFRP strengthened flexural deficient RC beams. There is good correlation between results of experimental and numerical investigations. Numerical approach presented in this study can be adopted for assessing the adequacy of CFRP retrofit measure.

Effects of Transverse Reinforcement on Flexural Strength and Ductility of High-Strength Concrete Columns (횡보강근에 따른 고강도 콘크리트 기둥의 휨강도와 연성)

  • 황선경;윤현도;정수영
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.365-372
    • /
    • 2002
  • This experimental investigation was conducted to examine the behavior of eight a third scale columns made of high-strength concrete(HSC). The columns were subjected to constant axial load corresponding to target value of 30 percent of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement(Ps=1.58, 2.25 %), tie configuration(hoop-type, cross-type, diagonal-type) and tie yield strength(fy=5,600, 7,950 kgf/$\textrm{cm}^2$). Test results indicated that the flexural strength of all the columns did not exceed calculated flexural capacities based on the equivalent concrete stress block used in current design code. Columns with 42 percent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-99 were shown ductile behavior. With axial load of 30 percent of the axial load capacity, the use of high-strength steel as transverse reinforcement may lead to equal or higher ductility than would be achieved with low-strength steel.

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.

Experimental tests on biaxially loaded concrete-encased composite columns

  • Tokgoz, Serkan;Dundar, Cengiz
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.423-438
    • /
    • 2008
  • This paper reports an experimental investigation of the behaviour of concrete-encased composite columns subjected to short-term axial load and biaxial bending. In the study, six square and four L-shaped cross section of both short and slender composite column specimens were constructed and tested to examine the load-deflection behaviour and to obtain load carrying capacities. The main variables in the tests were considered as eccentricity of applied axial load, concrete compressive strength, cross section, and slenderness effect. A theoretical procedure considering the nonlinear behaviour of the materials is proposed for determination of the behaviour of eccentrically loaded short and slender composite columns. Two approaches are taken into account to describe the flexural rigidity (EI) used in the analysis of slender composite columns. Observed failure mode and experimental and theoretical load-deflection behaviour of the specimens are presented in the paper. The composite column specimens and also some composite columns available in the literature have been analysed and found to be in good agreement with the test results.

Calculation of Limit Temperature on H-Beam Flexural Member Through the Thermal Stress Analysis under the Lateral Load (재하된 H형강 휨재의 열응력해석을 이용한 한계온도 산정)

  • Yoon, Sung Kee;Lee, Chy Hyoung;Koo, Bon Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.387-397
    • /
    • 2015
  • The domestic fire resistance performance test is conducted as a prescriptive design method such as quality test. In quality test there are 2 methods, unloaded fire resistance test and fire resistance test under load. In realistic, these tests, however, have problems with expense, time and diversity of structure. This study reviewed fire resistance performance of H-beam flexural member by thermal stress analysis using finite element ABAQUS program. This research is for the performance-based design reviewing applicability of domestic standard. As a result of this study, limit temperatures per each load ratio provied for proper performance of fire resistancy.

Service load response prediction of reinforced concrete flexural members

  • Ning, Feng;Mickleborough, Neil C.;Chan, Chun-Man
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 2001
  • A reliable and accurate method has been developed to predict the flexural deformation response of structural concrete members subject to service load. The method that has been developed relates the extent of concrete cracking, measured as a function of the magnitude of applied moment in a member, to the reduction in the effective moment of inertia of cracked reinforced concrete members under service load conditions. The ratio of the area of the moment diagram where the moment exceeds the cracking moment, to the total area of the moment diagram for any loading, provides the basis for the calculation of the effective moment of inertia. This ratio also represents mathematically a probability of crack occurrence. Verification of this method for the determination of the effective moment of inertia has been achieved from an experimental test program, and has included beam tests with different loading configurations, and shear wall tests subjected to a range of vertical and lateral load levels. Further verification of this method has been made with reference to the experimental investigation of other recently published work.