• Title/Summary/Keyword: flexural load

Search Result 1,223, Processing Time 0.028 seconds

An Experimental Study on the Performance of One-Way Slab Using Unbonded Post-Tensioned Anchorage for Single Tendon (비부착식 단일 강연선용 원형 정착구의 일방향 슬래브 적용에 관한 실험적 연구)

  • Kim, Min Sook;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2019
  • In this study, the static load test and the load transfer test were carried out to evaluate the structural performance of the circular anchorage proposed by the previous study. Specimens were fabricated according to KCI-PS101 and ETAG 013. As a result of the static load test, it was verified that the displacement of the wedge and the strand was kept constant when the tensile force of 80% of the nominal strength of the strand was applied. In the load transfer test, it was confirmed that all the specimens satisfied the stabilization formula of KCI-PS101 and ETAG 013. Post-tensioned one-way slab with circular anchorage were fabricated to evaluate the flexural behavior. All specimens exhibited the same flexural behavior and maximum load. However, the specimen with circular anchorage were advantageous than the rectangular anchorage one in terms of crack control of the anchorage zone.

Structural Performance Evaluation of Reinforced Concrete Beams with Externally Bonded FRP Sheets (RC 구조물에 적용된 부착식 휨보강공법의 보강성능 평가)

  • Hong, Geon-Ho;Shin, Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.78-86
    • /
    • 2003
  • Reinforced concrete beams are often retrofitted with various FRP composite sheets. This paper is focused on the comparison of structural performance of various FRP sheets and proposal of the retrofitting design formula. Effects of the FRP kinds(AFRP, GFRP, CFRP) and the reinforcing steel ratio on behavior of the retrofitting beams are tested and analyzed with particular emphasis on the maximum load capacity, stiffness, and ductility. The experimental work included 4 point flexural testing of 3.2m span reinforced concrete beams with bonded external reinforcements. The results show that the difference of FRP kinds is not large and the flexural load capacity is mainly affected by stiffness of the retrofitting materials. This paper also proposes the design formula on the retrofitting reinforced concrete flexural members and checks with this experimantal work and previous research results.

Estimation of Live Load Moment for Concrete Unfilled Steel Grid Deck Using Main Bearing Bar Distribution Factor (하중분배 계수를 적용한 비충전 강합성 바닥판 활하중 모멘트 산정)

  • Park, Young hoon;Kim, Sung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1667-1676
    • /
    • 2014
  • Because of the different flexural rigidity between longitudinal and transverse direction, orthotropic plate theory may be suitable for describing the behavior of composite deck. The ratio of flexural rigidity between longitudinal and transverse direction affects the live load moment. Because of the ratio of flexural rigidity of concrete unfilled steel grid deck has a direct relationship with main bearing bar spacing, it is concluded that the study for the distribution factor which is effected by main bearing bar spacing and aspect ratio is needed. In this study, evaluate the live load moment of concrete unfilled steel grid deck using the AASHTO LRFD Bridge Design Specification and presents the distribution coefficient equation for concrete unfilled steel grid deck.

Assessment of the characteristics of ferro-geopolymer composite box beams under flexure

  • Dharmar Sakkarai;Nagan Soundarapandian
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.251-267
    • /
    • 2023
  • In this paper, an experimental investigation is carried out to assess the inherent self-compacting properties of geopolymer mortar and its impact on flexural strength of thin-walled ferro-geopolymer box beam. The inherent self-compacting properties of the optimal mix of normal geopolymer mortar was studied and compared with self-compacting cement mortar. To assess the flexural strength of box beams, a total of 3 box beams of size 1500 mm × 200 mm × 150 mm consisting of one ferro-cement box beam having a wall thickness of 40 mm utilizing self-compacting cement mortar and two ferro-geopolymer box beams with geopolymer mortar by varying the wall thickness between 40 mm and 50 mm were moulded. The ferro-cement box beam was cured in water and ferro-geopolymer box beams were cured in heat chamber at 75℃ - 80℃ for 24 hours. After curing, the specimens are subjected to flexural testing by applying load at one-third points. The result shows that the ultimate load carrying capacity of ferro-geopolymer and ferro-cement box beams are almost equal. In addition, the stiffness of the ferro-geoploymer box beam is reduced by 18.50% when compared to ferro-cement box beam. Simultaneously, the ductility index and energy absorption capacity are increased by 88.24% and 30.15%, respectively. It is also observed that the load carrying capacity and stiffness of ferro-geopolymer box beams decreases when the wall thickness is increased. At the same time, the ductility and energy absorption capacity increased by 17.50% and 8.25%, respectively. Moreover, all of the examined beams displayed a shear failure pattern.

Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete (보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Jung-Hyun;Han, Sang-Hyu;Kim, Gyu-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2014
  • This study evaluated the bonding property of fiber and flexural behavior of fiber reinforced concrete. Amorphous steel fiber, hooked steel fiber and polyamide fiber was used for evaluation of bonding property and flexural behavior. As a result, the hooked steel fiber was pulled out from matrix when peak stress. However amorphous steel fiber occurred shear failure because bonding strength between fiber and matrix was higher than tensile strength of fiber. Polyamide fibers occurred significantly displacement to peak stress because of elongation of fiber. After that peak stress, fiber was cut off. Amorphous steel fiber reinforced concrete had a greater maximum flexural load compared with hooked steel fiber reinforced concrete because bonding performance between fiber and matrix was high and mixed population of fiber was many. However flexural stress was rapidly reduced in load-deflection curve because of shear failure of fiber. Flexural stress of hooked steel fiber reinforced concrete was slowly reduced because fiber was pulled out from the matrix. In the case of polyamide fiber reinforced concrete, flexural stress was rapidly lowered because of elongation of fiber. However flexural stress was increased again because of bonding property between polyamide fiber and matrix. The pull-out properties of the fiber and matrix has effect on the deformation capacity and flexural strength of fiber reinforced concrete.

Flexural Behavior of RC Arch Deck Subjected to Static Loading (철근콘크리트 아치 데크의 정적 휨 거동)

  • Eom, Gi-Ha;Yang, Dal-Hun;Kim, Sung-Jae;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.371-378
    • /
    • 2017
  • In this study, the flexural behavior of the RC Arch Deck under static loading was evaluated. Flexural test was carried out using an actual size RC Arch Deck with a length of 2.5 m, a center thickness of 100 mm and an end thickness of 160 mm. The test results showed that it's ultimate load was 1.74 times higher than the ultimate design load. On the other hand, it showed that the flexural behavior has different behaviors (i.e. different stiffness). This type of structural behavior indicates that it has inter-dependency between the deck and the supporting girder. Therefore, it is necessary to confirm the precise behavior by the static loading test of the RC Arch Deck, excluding the girder effect in the future study. The overall results showed that RC Arch Deck has excellent structural performance due to the structural advantages of the arch shape. In the future, the RC Arch Deck can be applied as a long span slab.

A Study on Flexural and Shear Behavior of the Structure with Steel Plate Concrete to Reinforced Concrete Member's Connection (철근 콘크리트와 강판 콘크리트 간 이질접합부로 구성된 구조물의 휨 및 전단거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Lee, Jong Bo;Won, Deok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.267-275
    • /
    • 2012
  • This paper describes the experimental study on the structural behavior of the joint plane between a RC(Reinforced Concrete) wall and a SC(Steel Plate Concrete) wall under out-of plane flexural loads and in-plane shear loads. The test specimens were produced with L and I shape to assess efficiently flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquake, cyclic loading tests were carried out. As results of the out-of plane flexural tests, ductile failure mode of vertical bars was shown under a push load and the failure load was more than nominal strength of the specimen. And the latter test was performed to verify the variation which was composition presence of horizontal bars in the SC member. The test results showed that capacity of the specimens was more than their nominal strength regardless of composition presence of horizontal bars.

Evaluation on Flexural Performance for Light-Weight Composite Floor with Sound Reduction System (층간소음 대응형 경량합성바닥판에 대한 휨성능 평가)

  • Bae, Kyu Woong;Lee, Sang Sup;Park, Keum Sung;Heo, Byung Wook;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.241-250
    • /
    • 2014
  • The purpose of this study is to propose structural technologies on the light-weight composite floor systems in the unit modular and to evaluate structural performance of the composite floor through flexural experiments. The flexural experiments were carried out on total nine specimens(each three type in shape) using steel flat deck and truss deck. From the results of test, all specimens showed the same failure patterns which exhibited deflection at the center of the specimens due to flexural deformation before concrete crushing at the upper of specimens. Also, we know that the proposed floors satisfied in serviceability and would be safe sufficiently. The ratio of experimental yield load by theoretical nominal load was the distribution of 0.86 to 1.27 with an average 1.04. Coefficient of variation in distribution showed good agreement.

Flexural strengths of implant-supported zirconia based bridges in posterior regions

  • Rismanchian, Mansour;Shafiei, Soufia;Nourbakhshian, Farzaneh;Davoudi, Amin
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.346-350
    • /
    • 2014
  • PURPOSE. Impact forces in implant supported FDP (fixed dental prosthesis) are higher than that of tooth supported FDPs and the compositions used in frameworks also has a paramount role for biomechanical reasons. The aim of this study was to evaluate the flexural strength of two different zirconia frameworks. MATERIALS AND METHODS. Two implant abutments with 3.8 mm and 4.5 mm platform were used as premolar and molar. They were mounted vertically in an acrylic resin block. A model with steel retainers and removable abutments was fabricated by milling machine; and 10 FDP frameworks were fabricated for each Biodenta and Cercon systems. All samples were thermo-cycled for 2000 times in $5-55^{\circ}C$ temperature and embedded in $37^{\circ}C$ artificial saliva for one week. The flexural test was done by a rod with 2 mm ending diameter which was applied to the multi-electromechanical machine. The force was inserted until observing fracture. The collected data were analyzed with SPSS software ver.15, using Weibull modulus and independent t-test with the level of significance at ${\alpha}=.05$. RESULTS. The mean load bearing capacity values were higher in Biodenta but with no significant differences (P>.05). The Biodenta frameworks showed higher load bearing capacity ($F_0=1700$) than Cercon frameworks ($F_0=1520$) but the reliability (m) was higher in Cercon (m=7.5). CONCLUSION. There was no significant difference between flexural strengths of both zirconia based framework systems; and both Biodenta and Cercon systems are capable to withstand biting force (even parafunctions) in posterior implant-supported bridges with no significant differences.

Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC

  • Kim, Seugnwon;Jung, Haekook;Kim, Yongjae;Park, Cheolwoo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.163-171
    • /
    • 2018
  • Plain concrete is a brittle material with a very low tensile strength compared to compressive strength and critical tensile strain. This study analyzed the dynamic characteristics of high-performance fiber-reinforced cementitious composites based on slurry-infiltrated fiber concrete (SIFCON-based HPFRCC), which maximizes the steel-fiber volume fraction and uses high-strength mortar to increase resistance to loads, such as explosion and impact, with a very short acting time. For major experimental variables, three levels of fiber aspect ratio and five levels of fiber volume fraction between 6.0% and 8.0% were considered, and the flexural strength and toughness characteristics were analyzed according to these variables. Furthermore, three levels of the aspect ratio of used steel fibers were considered. The highest flexural strength of 65.0 MPa was shown at the fiber aspect ratio of 80 and the fiber volume fraction of 7.0%, and the flexural strength and toughness increased proportionally to the fiber volume fraction. The test results according to fiber aspect ratio and fiber volume fraction revealed that after the initial crack, the load of the SIFCON-based HPFRCC continuously increased because of the high fiber volume fraction. In addition, sufficient residual strength was achieved after the maximum strength; this achievement will bring about positive effects on the brittle fracture of structures when an unexpected load, such as explosion or impact, is applied.