• 제목/요약/키워드: flexural failure load

검색결과 408건 처리시간 0.027초

Structural behaviors of notched steel beams strengthened using CFRP strips

  • Yousefi, Omid;Narmashiri, Kambiz;Ghaemdoust, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.35-43
    • /
    • 2017
  • This paper presents the findings of experimental and numerical investigations on failure analysis and structural behavior of notched steel I-beams reinforced by bonded Carbon Fiber Reinforced Polymer (CFRP) plates under static load. To find solutions for preventing or delaying the failures, understanding the CFRP failure modes is beneficial. One non-strengthened control beam and four specimens with different deficiencies (one side and two sides) on flexural flanges in both experimental test and simulation were studied. Two additional notched beams were investigated just numerically. In the experimental test, four-point bending method with static gradual loading was employed. To simulate the specimens, ABAQUS software in full three dimensional (3D) case and non-linear analysis method was applied. The results show that the CFRP failure modes in strengthening of deficient steel I-beams include end-debonding, below point load debonding, splitting and delamination. Strengthening schedule is important to the occurrences and sequences of CFRP failure modes. Additionally, application of CFRP plates in the deficiency region prevents crack propagation and brittle failure.

Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides

  • Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.37-49
    • /
    • 2019
  • In this study, the shear behaviour of reinforced concrete (RC) beams that were retrofitted using precast panels of ultra-high performance fiber reinforced concrete (UHPFRC) is presented. The precast UHPFRC panels were glued to the side surfaces of RC beams using epoxy adhesive in two different configurations: (i) retrofitting two sides, and (ii) retrofitting three sides. Experimental tests on the adhesive bond were conducted to estimate the bond capacity between the UHPFRC and normal concrete. All the specimens were tested in shear under varying levels of shear span-to-depth ratio (a/d=1.0; 1.5). For both types of configuration, the retrofitted specimens exhibited a significant improvement in terms of stiffness, load carrying capacity and failure mode. In addition, the UHPFRC retrofitting panels glued in three-sides shifted the failure from brittle shear to a more ductile flexural failure with enhancing the shear capacity up to 70%. This was more noticeable in beams that were tested with a/d=1.5. An approach for the approximation of the failure capacity of the retrofitted RC beams was evolved using a multi-level regression of the data obtained from the experimental work. The predicted values of strength have been validated by comparing them with the available test data. In addition, a 3-D finite element model (FEM) was developed to estimate the failure load and overall behaviour of the retrofitted beams. The FEM of the retrofitted beams was conducted using the non-linear finite element software ABAQUS.

고성능 탄소섬유봉으로 보강된 철근콘크리트 보의 휨거동에 관한 연구 (A Study on the Flexural Behavior of RC Beams Strengthened with High-Performance Carbon Fiber Bars)

  • 하기주;신종학;박연동;전찬목;이영범;김기태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.451-456
    • /
    • 2002
  • An experimental study was carried out to investigate the flexural behavior of RC beams strengthened with high-performance carbon fiber bars. Specimens designed with the conventional retrofitting method were also tested to compare load-carrying capacity and ductility. As the results, specimens strengthened with high-performance carbon fiber bars showed much higher load-carrying capacity and ductility compared to specimens strengthened with a steel plate and carbon fiber sheets. The failure mechanism of the specimen strengthened with a high-performance carbon fiber bar was bond-slip, whereas that of the others were interface debonding or rip-off.

  • PDF

Flexural behaviour of reinforced concrete beams strengthened with NSM CFRP prestressed prisms

  • Liang, Jiong-Feng;Yu, Deng;Xie, Shengjun;Li, Jianping
    • Structural Engineering and Mechanics
    • /
    • 제62권3호
    • /
    • pp.291-295
    • /
    • 2017
  • The behaviour of reinforced concrete beams strengthened with near surface mounted (NSM) CFRP prestressed prisms was experimentally investigated. Five RC beams were tested under four point bending. All beams were made with dimensions of 300 mm in width, 2000 mm in length and 150 in depth. The effects of presstress level of CFRP prestressed prisms and prism material type were studied. The failure mode, load capacity, deflection, CFRP strain, steel strain and ductility of the tested beams were all analyzed. The results showed that the behavior of the reinforced concrete beams strengthened with NSM CFRP prestressed prisms showed a significant increase in the load-carrying capacity and the deformation capacity. The NSM CFRP prestressed prisms strengthening technique could be considered as an effective method for repairing RC structures.

LRFD법으로 설계된 단경간 및 연속경간 강합성 플레이트 거더 및 박스 거더의 휨에 대한 신뢰도해석 (Reliability Analysis of Single and Continuous Span Composite Plate and Box Girder Designed by LRFD Method under Flexure)

  • 신동구;노준식;조은영
    • 한국강구조학회 논문집
    • /
    • 제20권1호
    • /
    • pp.183-193
    • /
    • 2008
  • 국내 LRFD 도로교설계규정을 정립하기 위한 자료로 활용하기 위하여 단경간 및 3경간 연속 플레이트 거더 및 박스 거더 합성단면을 하중저항계수설계법으로 설계하고 설계된 단면의 휨에 대한 신뢰도해석을 수행하였다. LRFD 법에 의한 합성거더 단면 설계 시에는 최근 국내 통행차량의 특성을 분석하여 새로 제안된 활하중을 적용하였다. 신뢰도해석에서 휨저항강도는 최근 국내에서 생산된 16,000여 구조용 강재 표본의 항복강도 통계적 특성을 반영하여 재료 비선형 소성해석으로 구한 강합성단면의 휨저항강도 통계를 이용하였다. 활하중에 의한 작용모멘트의 편심계수는 1.0~1.2를 적용하였으며 강거더 자중, 콘크리트 바닥판 자중, 포장면 자중 등에 의한 고정하중 모멘트 통계 값은 A SHTO 보정자료를 사용하였다. Rackwitz-Fiessler 법으로 신뢰도해석을 수행하고 지간별, 강거더 형식별, 활하중계수별, 활하중 모멘트의 편심계수별로 신뢰도지수 계산 결과를 제시하였다.

Behavior of RC beams strengthened with NSM CFRP strips under flexural repeated loading

  • Fathuldeen, Saja Waleed;Qissab, Musab Aied
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.67-80
    • /
    • 2019
  • Strengthening with near surface mounted carbon fibre reinforced polymers (NSM-CFRP) is a strengthening technique that have been used for several decades to increase the load carrying capacity of reinforced concrete members. In Iraq, many concrete buildings and bridges were subjected to a wide range of damage as a result of the last war and many other events. Accordingly, there is a progressive increase in the strengthening of concrete structures, bridges in particular, by using CFRP strengthening techniques. Near-surface mounted carbon fibre polymer has been recently proved as a powerful strengthening technique in which the CFRP strips are sufficiently protected against external environmental conditions especially the high-temperature rates in Iraq. However, this technique has not been examined yet under repeated loading conditions such as traffic loads on bridge girders. The main objective of this research was to investigate the effectiveness of NSM-CFRP strips in reinforced concrete beams under repeated loads. Different parameters such as the number of strips, groove size, and two types of bonding materials (epoxy resin and cement-based adhesive) were considered. Fifteen NSM-CFRP strengthened beams were tested under concentrated monotonic and repeated loadings. Three beams were non-strengthened as reference specimens while the remaining were strengthened with NSM-CFRP strips and divided into three groups. Each group comprises two beams tested under monotonic loads and used as control for those tested under repeated loads in the same group. The experimental results are discussed in terms of load-deflection behavior up to failure, ductility factor, cumulative energy absorption, number of cycles to failure, and the mode of failure. The test results proved that strengthening with NSM-CFRP strips increased both the flexural strength and stiffness of the tested beams. An increase in load carrying capacity was obtained in a range of (1.47 to 4.49) times that for the non-strengthened specimens. Also, the increase in total area of CFRPs showed a slight increase in flexural capacity of (1.02) times the value of the control strengthened one tested under repeated loading. Increasing the total area of CFRP strips resulted in a reduction in ductility factor reached to (0.71) while the cumulative energy absorption increased by (1.22) times the values of the strengthened reference specimens tested under repeated loading. Moreover, the replacement of epoxy resin with cement-based adhesive as a bonding material exhibited higher ductility than specimen with epoxy resin tested under monotonic and repeated loading.

Finite element parametric study of RC beams strengthened with carbon nanotubes modified composites

  • Irshidat, Mohammad R.;Alhusban, Rami S.
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.131-141
    • /
    • 2021
  • This paper aims at investigating the capability of different FRP/concrete interface models to predict the effect of carbon nanotubes on the flexural behavior of RC beams strengthened with CFRP. Three different interfacial bond models are proposed to simulate the adhesion between CFRP composites and concrete, namely: full bond, nonlinear spring element, and cohesive zone model. 3D Nonlinear finite element model is developed then validated using experimental work conducted by the authors in a previous investigation. Cohesive zone model (CZM) has the best agreement with the experimental results in terms of load-deflection response. CZM is the only bond model that accurately predicted the cracks patterns and failure mode of the strengthened RC beams. The FE model is then expanded to predict the effect of bond strength on the flexural capacity of RC beams strengthened with externally bonded CNTs modified CFRP composites using CZM bond model. The results reveal that the flexural capacity of the strengthened beams increases with increasing the bond strength value. However, only 23% and 22% of the CFRP stress and strain capacity; in the case of full bond; can be utilized before failure.

Behavior and modeling of RC beams strengthened with NSM-steel technique

  • Md. Akter Hosen;Khalid Ahmed Al Kaaf;A.B.M. Saiful Islam;Mohd Zamin Jumaat;Zaheer Abbas Kazmi
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.67-81
    • /
    • 2023
  • The reinforced concrete (RC) structures might need strengthening or upgradation due to adverse environmental conditions, design defects, modification requirements, and to prolong the expected lifespan. The RC beams have been efficiently strengthened using the near surface mounted (NSM) approach over the externally bonded reinforcing (EBR) system. In this study, the performance of RC beam elements strengthened with NSM-steel rebars was investigated using an experimental program and nonlinear finite element modeling (FEM). Nine medium-sized, rectangular cross-section RC beams total in number made up for the experimental evaluation. The beams strengthened with varying percentages of NSM reinforcement, and the number of grooves was assessed in four-point bending experiments up to failure. Based on the experimental evaluation, the load-displacement response, crack features, and failure modes of the strengthened beams were recorded and considered. According to the experimental findings, NSM steel greatly improved the flexural strength (up to about 84%) and stiffness of RC beams. The flexural response of the tested beams was simulated using a 3D non-linear finite element (FE) model. The findings of the experiments and the numerical analysis showed good agreement. The effect of the NSM groove and reinforcement on the structural response was then assessed parametrically.

단면구성요소(斷面構成要素)에 관(關)한 목질복합(木質複合) I및 Box형 보의 구조적(構造的) 성능(性能) 분석(分析) (I) (Analysis of Structural Performance of Wood Composite I and Box Beam on Cross Section Component (I) - Calculation and Analysis of Flexural Rigidity and Deflection -)

  • 오세창;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제19권2호
    • /
    • pp.40-55
    • /
    • 1991
  • To investigate the influence of cross section geometries on the behavior of composite beams in the case of small span to depth ratio and deep beams. the static flexural behavior of composite I-beams and Box- beams was evaluated. 12 types of composite I -beams composed of LVL flanges and particleboard or plywood web and 3 types of composite Box-beams composed of LVL flanges and plywood web were tested under one-point loading. The load-deflection curves were almost linear to failure, therefore, the behavior of tested composite beams was elastic. The theoretical flexural rigidity of composite beams was calculated and compared with observed flexural rigidity. The highest value was found in I-W type beams and the lowest value was found in G-P type beams. The difference between theoretical and observed flexural rigidity was small. Theoretical total deflection of tested composite beams was calculated using flexural rigidity and compared with actual deflection. Shear deflection of these beams was evaluated by the approximation method, solid crosss section method and elementary method. The difference between actual deflection and expected deflection was not found in D, E and F type beams. This defference was small in G, H and I type beams or Box-beam.

  • PDF

보수$\cdot$보강된 철근콘크리트 보의 휨 및 전단 거동에 관한 연구 (A Study on the Flexural and Shear Behavior of Repaired and Rehabilitated RC Beams)

  • 김태봉;이재범;류택은
    • 한국안전학회지
    • /
    • 제14권1호
    • /
    • pp.129-140
    • /
    • 1999
  • This study presents test results of RC beams strengthened by steel plates, carbon fiber sheets(CFS) and aramid fiber sheets(AFS) for increasing flexural and shear resistance. The test was performed with different parameters including the type of strengthening materials, flexural-strengthening methods and shear-strengthening methods. In case of flexural test, RC beams are initially loaded to 70% of the ultimate flexural capacity and in case of shear test loaded to 60 or 80 percent of the ultimate shear capacity and subsequently reinforced with steel plates, CFS and AFS. Experimental data on strength, steel strain, deflection, and mode of failure of the reinforced beams were obtained, and comparisons between the different shear reinforced schemes and the non-strengthened control beams were made. The test results showed that damaged RC beams strengthened by steel plates, CFS and AFS have more improved the flexural and shear capacity. For the beams with external reinforcement by steel plates, aramid fiber sheets and carbon fiber sheets increases in ultimate strength of 4 to 21, 17 to 43 and 26 to 36 percent were respectively achieved. Initial load had small effect on strength after reinforcement, but an important influence on deflection. One sheet reinforced was stronger than two sheets reinforced but less deflected than two sheets reinforced.

  • PDF