• Title/Summary/Keyword: flexural ductility

Search Result 534, Processing Time 0.022 seconds

Flexural ductility and deformability of reinforced and prestressed concrete sections

  • Au, Francis T.K.;Leung, Cliff C.Y.;Kwan, Albert K.H.
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.473-489
    • /
    • 2011
  • In designing a flexural member for structural safety, both the flexural strength and ductility have to be considered. For this purpose, the flexural ductility of reinforced concrete sections has been studied quite extensively. As there have been relatively few studies on the flexural ductility of prestressed concrete sections, it is not well understood how various structural parameters affect the flexural ductility. In the present study, the full-range flexural responses of reinforced and prestressed concrete sections are analyzed taking into account the nonlinearity and stress-path dependence of constitutive materials. From the numerical results, the effects of steel content, yield strength and degree of prestressing on the yield curvature and ultimate curvature are evaluated. It is found that whilst the concept of flexural ductility in terms of the ductility factor works well for reinforced sections, it can be misleading when applied to prestressed concrete sections. For prestressed concrete sections, the concept of flexural deformability in terms of ultimate curvature times overall depth of section may be more appropriate.

Effect of confinement on flexural ductility design of concrete beams

  • Chen, X.C.;Bai, Z.Z.;Au, F.T.K.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.129-143
    • /
    • 2017
  • Seismic design of reinforced concrete (RC) structures requires a certain minimum level of flexural ductility. For example, Eurocode EN1998-1 directly specifies a minimum flexural ductility for RC beams, while Chinese code GB50011 limits the equivalent rectangular stress block depth ratio at peak resisting moment to achieve a certain nominal minimum flexural ductility indirectly. Although confinement is effective in improving the ductility of RC beams, most design codes do not provide any guidelines due to the lack of a suitable theory. In this study, the confinement for desirable flexural ductility performance of both normal- and high-strength concrete beams is evaluated based on a rigorous full-range moment-curvature analysis. An effective strategy is proposed for flexural ductility design of RC beams taking into account confinement. The key parameters considered include the maximum difference of tension and compression reinforcement ratios, and maximum neutral axis depth ratio at peak resisting moment. Empirical formulae and tables are then developed to provide guidelines accordingly.

A minimum ductility design method for non-rectangular high-strength concrete beams

  • Au, F.T.K.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.115-130
    • /
    • 2004
  • The flexural ductility of solid rectangular reinforced concrete beams has been studied quite extensively. However, many reinforced concrete beams are neither solid nor rectangular; examples include T-, ${\Gamma}$-, ${\Pi}$- and box-shaped beams. There have been few studies on the flexural ductility of non-rectangular reinforced concrete beams and as a result little is known about the possible effect of sectional shape on flexural ductility. Herein, the effect of sectional shape on the post-peak flexural behaviour of reinforced normal and high-strength concrete beams has been studied using a newly developed analysis method that employs the actual stress-strain curves of the constitutive materials and takes into account the stress-path dependence of the stress-strain curve of the steel reinforcement. It was revealed that the sectional shape could have significant effect on the flexural ductility of a concrete beam and that the flexural ductility of a T-, ${\Gamma}$-, ${\Pi}$- or box-shaped beam is generally lower than that of a solid rectangular beam with the same overall dimensions and the same amount of reinforcement provided. Based on the numerical results obtained, a simple method of ensuring the provision of a certain minimum level of flexural ductility to non-rectangular concrete beams has been developed.

Post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beams

  • Pam, H.J.;Kwan, A.K.H.;Ho, J.C.M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.459-474
    • /
    • 2001
  • The complete moment-curvature curves of doubly reinforced concrete beams made of normal- or high-strength concrete have been evaluated using a newly developed analytical method that takes into account the stress-path dependence of the constitutive properties of the materials. From the moment-curvature curves and the strain distribution results obtained, the post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beam sections are studied. It is found that the major factors affecting the flexural ductility of reinforced concrete beam sections are the tension steel ratio, compression steel ratio and concrete grade. Generally, the flexural ductility decreases as the amount of tension reinforcement increases, but increases as the amount of compression reinforcement increases. However, the effect of the concrete grade on flexural ductility is fairly complicated, as will be explained in the paper. Quantitative analysis of such effects has been carried out and a formula for direct evaluation of the flexural ductility of doubly reinforced concrete sections developed. The formula should be useful for the ductility design of doubly reinforced normal- and high-strength concrete beams.

Flexural ductility of RC beam sections at high strain rates

  • Pandey, Akhilesh K.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.537-552
    • /
    • 2013
  • Computation of flexural ductility of reinforced concrete beam sections has been proposed by taking into account strain rate sensitive constitutive behavior of concrete and steel, confinement of core concrete and degradation of cover concrete during load reversal under earthquake loading. The estimate of flexural ductility of reinforced concrete rectangular sections has been made for a wide range of tension and compression steel ratios for confined and unconfined concrete at a strain rate varying from $3.3{\times}10^{-5}$ to 1.0/sec encountered during normal and earthquake loading. The parametric studies indicated that flexural ductility factor decreases at increasing strain rates. Percentage decrease is more for a richer mix concrete with the similar reinforcement. The confinement effect has marked influence on flexural ductility and increase in ductility is more than twice for confined concrete (0.6 percent volumetric ratio of transverse steel) compared to unconfined concrete. The provisions in various codes for achieving ductility in moment resisting frames have been discussed.

Combined strain gradient and concrete strength effects on flexural strength and ductility design of RC columns

  • Chen, M.T.;Ho, J.C.M.
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.607-642
    • /
    • 2015
  • The stress-strain relationship of concrete in flexure is one of the essential parameters in assessing the flexural strength and ductility of reinforced concrete (RC) columns. An overview of previous research studies revealed that the presence of strain gradient would affect the maximum concrete stress developed in flexure. However, no quantitative model was available to evaluate the strain gradient effect on concrete under flexure. Previously, the authors have conducted experimental studies to investigate the strain gradient effect on maximum concrete stress and respective strain and developed two strain-gradient-dependent factors k3 and ko for modifying the flexural concrete stress-strain curve. As a continued study, the authors herein will extend the investigation of strain gradient effects on flexural strength and ductility of RC columns to concrete strength up to 100 MPa by employing the strain-gradient-dependent concrete stress-strain curve using nonlinear moment-curvature analysis. It was evident from the results that both the flexural strength and ductility of RC columns are improved under strain gradient effect. Lastly, for practical engineering design purpose, a new equivalent rectangular concrete stress block incorporating the combined effects of strain gradient and concrete strength was proposed and validated. Design formulas and charts have also been presented for flexural strength and ductility of RC columns.

Maximum axial load level and minimum confinement for limited ductility design of high-strength concrete columns

  • Lam, J.Y.K.;Ho, J.C.M.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.357-376
    • /
    • 2009
  • In the design of concrete columns, it is important to provide some nominal flexural ductility even for structures not subjected to earthquake attack. Currently, the nominal flexural ductility is provided by imposing empirical deemed-to-satisfy rules, which limit the minimum size and maximum spacing of the confining reinforcement. However, these existing empirical rules have the major shortcoming that the actual level of flexural ductility provided is not consistent, being generally lower at higher concrete strength or higher axial load level. Hence, for high-strength concrete columns subjected to high axial loads, these existing rules are unsafe. Herein, the combined effects of concrete strength, axial load level, confining pressure and longitudinal steel ratio on the flexural ductility are evaluated using nonlinear moment-curvature analysis. Based on the numerical results, a new design method that provides a consistent level of nominal flexural ductility by imposing an upper limit to the axial load level or a lower limit to the confining pressure is developed. Lastly, two formulas and one design chart for direct evaluation of the maximum axial load level and minimum confining pressure are produced.

An Experimental Study on the Strengh and Ductility of High-Strength Flexural Members (고강도 휨재의 강도와 연성에 관한 실험적 연구)

  • Lee, Seung-Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.19-28
    • /
    • 2001
  • The strength and ductility of steel flexural members are investigated experimentally in this study. As for the performance evaluation of flexural members. experimental studies on the 9 test specimens were carried out. Four specimens were fabricated from SM490 and five specimens were fabricated from SM570. The experimental results of the specimens were analyzed with focus on the flexural strength and ductility. The experimental results exhibited that all the specimens provided sufficient flexural strengthes which exceeded the nominal flexural strengthes specified in the current Limit State Design Specification by average ratio of 1.22. However. the experimental results showed that the compact-section specimens fabricated from SM570 did not provide the required rotational ductility. The yield-to-tensile strength ratio(YR) of SM570 of about 0.9 might be the causes of such insufficient capacities.

  • PDF

On the Ductility of High-Strength Concrete Beams

  • Jang, Il-Young;Park, Hoon-Gyu;Kim, Sung-Soo;Kim, Jong-Hoe;Kim, Yong-Gon
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • Ductility is important in the design of reinforced concrete structures. In seismic design of reinforced concrete members, it is necessary to allow for relatively large ductility so that the seismic energy is absorbed to avoid shear failure or significant degradation of strength even after yielding of reinforcing steels in the concrete member occurs. Therefore, prediction of the ductility should be as accurate as possible. The principal aim of this paper is to present the basic data for the ductility evaluation of reinforced high-strength concrete beams. Accordingly, 23 flexural tests were conducted on full-scale structural concrete beam specimens having concrete compressive strength of 40, 60, and 70MPa. The test results were then reviewed in terms of flexural capacity and ductility. The effect of concrete compressive strength, web reinforcement ratio, tension steel ratio, and shear span to beam depth ratio on ductility were investigated experimentally.

Effects of strain hardening of steel reinforcement on flexural strength and ductility of concrete beams

  • Ho, J.C.M.;Au, F.T.K.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.185-198
    • /
    • 2005
  • In the design of reinforced concrete beams, it is a standard practice to use the yield stress of the steel reinforcement for the evaluation of the flexural strength. However, because of strain hardening, the tensile strength of the steel reinforcement is often substantially higher than the yield stress. Thus, it is a common belief that the actual flexural strength should be higher than the theoretical flexural strength evaluated with strain hardening ignored. The possible increase in flexural strength due to strain hardening is a two-edge sword. In some cases, it may be treated as strength reserve contributing to extra safety. In other cases, it could lead to greater shear demand causing brittle shear failure of the beam or unexpected greater capacity of the beam causing violation of the strong column-weak beam design philosophy. Strain hardening may also have certain effect on the flexural ductility. In this paper, the effects of strain hardening on the post-peak flexural behaviour, particularly the flexural strength and ductility, of reinforced normal- and high-strength concrete beams are studied. The results reveal that the effects of strain hardening could be quite significant when the tension steel ratio is relatively small.