• 제목/요약/키워드: flexural cracks

검색결과 239건 처리시간 0.022초

고강도 콘크리트를 사용한 보-기둥 접합부의 비 선형 거동에 관한 기초적 연구 (A Fundmental Study of the Inlastic Behavior of High Strength Concrete Beam-Column Joints.)

  • 민정규;박현수;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.51-56
    • /
    • 1990
  • Six small-scale reinforced concrete beam-column joint specimens subjected to monotonic and cyclic loading were tested to investigate the effects of strength of concrete. Variables are 1)compressive strength of concrete(f' c=300, 700kg/㎠), 2)shear span to depth ratio (a/d=4.7, 2.0). The major results of this test were: 1)flexural strength of high strength concrete beam-column joint was not affected too much by the compressive strength of concrete, 2) flexural cracks emerge to inside of beam deeply for high strength concrete member.

  • PDF

MDF 시멘트-SiC 위스커 복합재료의 미세구조적 특성 (Microstructural Characterization of MDF Cement-SiC Whisker Composites)

  • 김태현;최상흘
    • 한국세라믹학회지
    • /
    • 제29권8호
    • /
    • pp.617-622
    • /
    • 1992
  • In order to study on the effect of SiC whisker in flexural strength characterization of macro defect-free (MDF) cement composites, which composed of high alumina cement and polyvinyl alcohol, microstructural characterization of the composite specimens fabricated by the addition of SiC whiskers was investigated. Microproes are created around the SiC whisker, MDF cement didn't react with the SiC whisker. However, flexural strength of the composites have been improved. Fracture morphology of the composites, presents mainly intergranular type fracture passing around the unhydrated particles and siC whiskers, and partially transgranular type fracture. The main strengthening mechanisms of the MDF cement composites reinforced with SiC whiskers are characterized by crack deflection, microcracking, and bridging of cracks.

  • PDF

무기질계 영구거푸집의 성능평가를 위한 실험적 연구 (The Experimental Study for Inorganic Permanent Form's Performance Evaluation)

  • 김용성;강병훈;김우재;정병훈;정재영;정상진;김광수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2001년도 학술논문발표회
    • /
    • pp.1-7
    • /
    • 2001
  • To do performance evaluations about inorganic permanent form mixed in admixture(fly ash, silica fume) and after placed concrete, it is examined reinforcement materials in the permanent form from shear strength, bond strength and flexural strength tests. In this study, permanent form was inserted with reinforcement metal fitting is strength-tested in several method. The result of this study is belows. (1) In bond strength test, Most specimens are satisfied with criterion-6 kgf/$cm^2$. (2) Irrelative with the inserted metal fitting's shape, unevenness and aggregate, Permanent form and after placed concrete have good condition in the shear strength test. (3) In flexural test, there is no drop out of permanent form. Most cracks are located in nearby the strain point.

  • PDF

하이브리드 합성섬유를 이용한 고인성 섬유보강 복합체의 휨특성 (Flexural Characteristics of High Performance Fiber Reinforced Cement Composites used in Hybrid Synthetic Fibers)

  • 한병찬;전 에스더;박완신;이영석;복산양;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.734-737
    • /
    • 2004
  • The synthetic fibers such as polypropylene(PP) and polyvilyl-alcohol(PVA) fiber are poised as a low cost alternative for reinforcement in structural applications. It has been reported that synthetic fiber in cement composites can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. High performance fiber reinforced cementitious composite(HPFRCCs) shows ultra high ductile behavior in the hardened state, because of the fiber bridging properties. Therefore, a variety of experiments have being performed to access the performance of HPFRCCs recently. The research emphasis is on the flexural behavior of HPFRCCs made in synthetic fibers, and how this affects the composite property, and ultimately its strain-hardening performance. Three-point bending tests on HPFECCs are carried out. As the result of the bending tests, HPFRCCs showed high flexural strength and ductility. HPFRCCs made in PVA or Hybrid fiber were, also, superior to PP of singleness. On the other hand, effect of sand volume fraction on HPFRCCs made in PP was insignificant.

  • PDF

A tension stiffening model for analysis of RC flexural members under service load

  • Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.29-51
    • /
    • 2016
  • Tension-stiffening is the contribution of concrete between the cracks to carry tensile stresses after cracking in Reinforced Concrete (RC) members. In this paper, a tension-stiffening model has been proposed for computationally efficient nonlinear analysis of RC flexural members subjected to service load. The proposed model has been embedded in a typical cracked span length beam element. The element is visualized to consist of at the most five zones (cracked or uncracked). Closed form expressions for flexibility and stiffness coefficients and end displacements have been obtained for the cracked span length beam element. Further, for use in everyday design, a hybrid analytical-numerical procedure has been developed for nonlinear analysis of RC flexural members using the proposed tension-stiffening model. The procedure yields deflections as well as redistributed bending moments. The proposed model (and developed procedure) has been validated by the comparison with experimental results reported elsewhere and also by comparison with the Finite Element Method (FEM) results. The procedure would lead to drastic reduction in computational time in case of large RC structures.

확폭교량 RC 상판의 휨거동에 관한 연구 (A Study on the Flexural Behaviors of RC Slabs of Widened Bridges)

  • 홍순길;장동일
    • 콘크리트학회지
    • /
    • 제6권3호
    • /
    • pp.152-161
    • /
    • 1994
  • 교량의 확폭공사에는 대개 기설부와 교량을일체화시키는 접합시공법이 행해지고 있다. 그러나 접합시공방법은 설계 및 시공상 여러 가지 복합적인 문제를 야기시킨다. 본 연구는 실험 및 구조해석을 통하여 접합시공에 따른 제반 문제점중 확폭교량 시공방법에 따른 구조거동과 콘크리트 양생시 기설부 교량을 통과하는 차량에 의해 발생하는 진동이 신설부 교량에 미치는 영향을 조사하고자 실시하였다. 연구결과, 낮은 하중에서 접합면에 휨균열이 발생하였고, 접합부 철근에서 약간의 응력집중현상 및 철근과 콘크리트간에 슬립현상이 관찰되었으나, 접합시공에 따른 전체적인 강도의 감소는 미소하였다. 또한, 신설부 교량의 콘크리트 양생중 진동에 의한 강도의 감소는 없음을 알 수 있었다.

Influence of high-cycle fatigue on the tension stiffening behavior of flexural reinforced lightweight aggregate concrete beams

  • Chen, How-Ji;Liu, Te-Hung;Tang, Chao-Wei;Tsai, Wen-Po
    • Structural Engineering and Mechanics
    • /
    • 제40권6호
    • /
    • pp.847-866
    • /
    • 2011
  • The objective of this study was to experimentally investigate the bond-related tension stiffening behavior of flexural reinforced concrete (RC) beams made with lightweight aggregate concrete (LWAC) under various high-cycle fatigue loading conditions. Based on strain measurements of tensile steel in the RC beams, fatigue-induced degradation of tension stiffening effects was evaluated and was, compared to reinforced normal weight concrete (NWC) beams with equal concrete compressive strengths (40 MPa). According to applied load-mean steel strain relationships, the mean steel strain that developed under loading cycles was divided into elastic and plastic strain components. The experimental results showed that, in the high-cycle fatigue regime, the tension stiffening behavior of LWAC beams was different from that of NWC beams; LWAC beams had a lesser reduction in tension stiffening due to a better bond between steel and concrete. This was reflected in the stability of the elastic mean steel strains and in the higher degree of local plasticity that developed at the primary flexural cracks.

Finite element parametric study of RC beams strengthened with carbon nanotubes modified composites

  • Irshidat, Mohammad R.;Alhusban, Rami S.
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.131-141
    • /
    • 2021
  • This paper aims at investigating the capability of different FRP/concrete interface models to predict the effect of carbon nanotubes on the flexural behavior of RC beams strengthened with CFRP. Three different interfacial bond models are proposed to simulate the adhesion between CFRP composites and concrete, namely: full bond, nonlinear spring element, and cohesive zone model. 3D Nonlinear finite element model is developed then validated using experimental work conducted by the authors in a previous investigation. Cohesive zone model (CZM) has the best agreement with the experimental results in terms of load-deflection response. CZM is the only bond model that accurately predicted the cracks patterns and failure mode of the strengthened RC beams. The FE model is then expanded to predict the effect of bond strength on the flexural capacity of RC beams strengthened with externally bonded CNTs modified CFRP composites using CZM bond model. The results reveal that the flexural capacity of the strengthened beams increases with increasing the bond strength value. However, only 23% and 22% of the CFRP stress and strain capacity; in the case of full bond; can be utilized before failure.

트러서메쉬 보강 하프 슬래브의 구조적 거동에 관한 실험적 연구 (An Experimental Study on Structural Behavior of Half Slab Reinforced by Truss Mesh)

  • 고만영;김용부;박현수;정란
    • 콘크리트학회지
    • /
    • 제7권4호
    • /
    • pp.119-128
    • /
    • 1995
  • 이 연구는 최근 건설공사에서의 인력 및 원가의 절감, 공기의 단축 등을 도모하기 위하여 도입되고 있는 하프슬래브의 실용화를 위한 구조거동을 알아보기 위한 실험적 연구이다. PC 패널의 두께, 트러스메쉬의 형사, 가력하중의 형태를 변수로 총 17개의 시험체를제작하여 PC 패널, 하프슬래브, 하프슬래브-벽체 접합부의 휨성능 실험을 하였다. 실험결과, 부방향 하중을 받는 PC 패널의 휨강도가 설계강도보다 작게 나타났으나 정방향 하중을 받는 PC판넬과 덧침콘크리트의 분리현상이 발견되지 않았으며 휨강도 또한 일체로 타설한 부재와 같은 휨내력을 발현하였다. 따라서, 본 연구에서는동바리를 2.0-2.5m간격으로 설치하고, PC판넬과 덧침콘크리트와의 접합면을 조면처리하고 청결을 유지하면 사용상 문제가 없는 것으로 판단되었다.

Concrete crack rehabilitation using biological enzyme

  • Chen, How-Ji;Tai, Pang-Hsu;Peng, Ching-Fang;Yang, Ming-Der
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.413-417
    • /
    • 2017
  • Concrete is a material popularly used in construction. Due to the load-bearing and external environmental factors during utilization or manufacturing, its surface is prone to flaws, such as crack and leak. To repair these superficial defects and ultimately and avoid the deterioration of the concrete's durability, numerous concrete surface protective coatings and crack repair products have been developed. Currently, studies are endeavoring to exploit the mineralization property of microbial strains for repairing concrete cracks be the repairing material for crack rehabilitation. This research aims to use bacteria, specifically B. pasteurii, in crack rehabilitation to enhance the flexural and compression strength of the repaired concrete. Serial tests at various bacterial concentrations and the same $Urea-CaCl_2$ medium concentration of 70% for crack rehabilitation were executed. The results prove that the higher the concentration of the bacterial broth, the greater the amount of calcium carbonate precipitate was induced, while using B. pasteurii broth was for crack rehabilitation. The flexural and compression strengths of the repaired concrete test samples were the greatest at 100% bacterial concentration. Compared to the control group (bacterial concentration of 0%), the flexural strength had increased by 32.58% for 1-mm crack samples and 51.01% for 2-mm crack samples, and the compression strength had increased by 28.58% and 23.85%, respectively. From the SEM and XRD test results, a greater quantity of rectangular and polygonal crystals was also found in samples with high bacterial concentrations. These tests all confirm that using bacteria in crack rehabilitation can increase the flexural and compression strength of the repaired concrete.