• Title/Summary/Keyword: flexural cracks

Search Result 239, Processing Time 0.024 seconds

Structural performance of GFRP-concrete composite beams

  • Yang, Yong;Xue, Yicong;Zhang, Tao;Tian, Jing
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.485-495
    • /
    • 2018
  • This paper presents the results of an experimental study on the structural performance of an innovative GFRP-concrete composite beam construction, which is reinforced with longitudinal GFRP pultruded box-profile and transverse steel stirrups. GFRP perfobond (PBL) shear connectors are employed to enhance the bonding performance between the GFRP profile and the concrete portion. To investigate the shear and flexural performance of this composite system, eight specimens were designed and tested under three-point and four-point bending. The main variables were the height of the composite beam and the shear span-to-depth ratio. The test results indicated that bonding cracks did not occur at the interface between the GFRP profile and the concrete until the final stage of the test. This shows that the specimens performed well as composite beams during the test and that the GFRP PBL connectors were reliable. Based on the test results, two calculation methods were used to determine the flexural and shear capacity of the composite beams. A comparative study of the test and theoretical results suggests that the proposed methods can reasonably predict both the flexural and shear capacities of the specimens, whereas the provisions of ACI 440 are relatively conservative on both counts.

Flexural behaviors of full-scale prestressed high-performance concrete box girders

  • Gou, Hongye;Gu, Jie;Ran, Zhiwen;Bao, Yi;Pu, Qianhui
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.595-605
    • /
    • 2020
  • In this study, the flexural behaviors of full-scale prestressed concrete box girders are experimentally investigated. Four girders were fabricated using two types of concrete (compressive strengths: 50 MPa and 70 MPa) and tested under four-point bending until failure. The measured parameters included the deflection, the stress and strain in concrete and steel bars, and cracks in concrete. The measurement results were used to analyze the failure mode, load-bearing capacity, and deformability of each girder. A finite element model is established to simulate the flexural behaviors of the girders. The results show that the use of high-performance concrete and reasonable combination of prestressed tendons could improve the mechanical performance of the box girders, in terms of the crack resistance, load-carrying capacity, stress distribution, and ductility.

Mechanical Behaviour of GFRP Composites according to Alumina Powder Impregnation Ratios in Resin (알루미나 분말 혼합 비율에 따른 GFRP의 기계적 강도 특성)

  • Kang, Dae-Kon;Park, Jai-Hak
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.22-30
    • /
    • 2020
  • Small fishing vessels are manufactured using FRP. Various studies have been conducted to increase the strength of the composite material by mixing alumina powder with resin. Tensile tests and flexural strength tests are conducted to examine the effect of alumina powder on the strength of GFRP. In the current study, resin/alumina composites at different alumina contents (i.e., 0, 1, 5, and 10 vol%) have been prepared. The physical and mechanical properties of the prepared composites have been investigated. From the results, the tensile strength of the specimen with alumina powder mixed in at 10% shows the highest value of 155.66 MPa. The tensile strength of the specimen mixed with alumina powder increases with the amount of alumina powder impregnated. In the flexural strength test, the flexural strength of neat resin without alumina powder has a highest value of 257.7 MPa. The flexural modulus of ALMix-5 has a highest value of 12.06 GPa. Barcol hardness of ALMix-10 has a highest value of 51. We show that alumina powder leads to decreasing cracks on the surface and decreasing length area of delamination.

Effect of macro and micro fiber volume on the flexural performance of hybrid fiber reinforced SCC

  • Turk, Kazim;Kina, Ceren;Oztekin, Erol
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.257-269
    • /
    • 2020
  • The aim of this study is to investigate the flexural performance of hybrid fiber reinforced self-compacting concrete (HFRSCC) having different ratio of micro and macro steel fiber. A total of five mixtures are prepared. In all mixtures, the sum of the steel fiber content is 1% and also water/binder ratio is kept constant. The amount of high range water reducer admixture (HRWRA) is arranged to satisfy the workability criteria of self-compacting concrete. Four-point bending test is carried out to analyze the flexural performance of the mixtures at 28 and 56 curing days. From the obtained load-deflection curves, the load carrying capacity, deflection and toughness values are investigated according to ASTM C1609, ASTM C1018 and JSCE standards. The mixtures containing higher ratio of macro steel fiber exhibit numerous micro-cracks and, thus, deflection-hardening response is observed. The mixture containing 1% micro steel fiber shows worst performance in the view of all flexural parameters. An improvement is observed in the aspect of toughness and load carrying capacity as the macro steel fiber content increases. The test results based on the standards are also compared taking account of abovementioned standards.

Damage Assessment of Reinforced Concrete Beams Under Flexural Failure Mode Using Acoustic Emission Testing (음향방출 기술을 이용한 철근콘크리트 보의 휨 파괴 손상평가)

  • David Kim;Seonglo Lee;Wonsuk Park
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.36-43
    • /
    • 2023
  • In this study, a four-point bending test was conducted to assess and detect the damage to reinforced concrete structures using the acoustic emission (AE) technique. Based on the crack investigation results, flexural failure was classified into four stages and compared with the characteristic analysis results of AE parameters. The parametric characterization indicated that the activity of the primary AE signal was high in the early stage, and that of the second signal increased after the flexural cracks stabilized. Because the secondary AE signal included noise generated by friction, parameter-based analysis for damage assessment was performed using the primary signal; the secondary signal was used as complement. The activity analyses of the primary and secondary signals effectively classified crack propagation; however, determining the macrocracks and yielding of reinforcing bars had certain limitations. Nevertheless, applying the damage index with cumulative AE energy is a complementary technique for detecting and assessing structure damage that well detects the occurrence of macrocracks.

Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

  • Ramin, Keyvan;Fereidoonfar, Mitra
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.89-118
    • /
    • 2015
  • The geometric nonlinearity of off-diagonal bracing system (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three dimensional finite element modeling. Nonlinear static analysis is considered to obtain performance level and seismic behaviour, and then the response modification factors calculated from each model's pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behaviour and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

Shear Performance of Large-Diameter Composite PHC Pile Strengthened by In-Filled Concrete and Shear Reinforcement (속채움 콘크리트와 전단철근을 사용한 대구경 합성 PHC말뚝의 전단보강 성능)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • Recently, the demand for large diameter piles has been rapidly increased in order to secure the allowable bearing capacity of pile foundation due to the increase of large structures such as high rise buildings. In this study, to improve the shear capacity of a conventional PHC pile, a large diameter composite PHC pile strengthened by in-filled concrete and shear reinforcement was manufactured. All the piles were tested according to the shear strength test method of Korean Standard. As a result of the shear test, the F-type piles which are produced without shear reinforcement occurred abrupt horizontal cracks after flexural and inclined shear cracks occurred. On the contrary, the FT-type piles which are produced with shear reinforcement exhibited stable flexural and inclined shear cracks uniformly over the entire pile without abrupt horizontal cracks. Furthermore, the maximum load of the large diameter composite PHC pile improved to 2.9 times in the F series, and more than 3.3 times in the FT series compared to the conventional PHC pile. This result indicated that FT-type piles had excellent composite behavior due to the shear reinforcement and effectively prevented the unstable growth of inclined shear cracks.

An analysis method Flexural Crack Propagation Behavior of Concrete with Aggregate Distribution of Section (단면의 골재분포를 고려한 콘크리트의 휨균열 진전 거동해석기법)

  • Chae, Young-Suk;Song, Kwan-Kwon;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.57-63
    • /
    • 2013
  • This paper discusses 2D models of beams for simulating the fracture of brittle materials. A simulation of an experiment on a concrete beam subjected to bending, in which two overlapping cracks occur, is used to study the effect of individual beam characteristics and different arrangements of the beams in the overall network mesh. It was found that any regular orientation of the beams influences the resulting crack patterns. Methods to implement a wide range of poisson's ratios are also developed, the use of the mesh to study arbitrary micro-structures is outlined. The crack pattern that are obtained with mesh are in good agreement with the experimental results. Also, numerical simulations of the tests were performed by means of a model, and non-integer dimensions were measured on the predicted mesh damage patterns.

Behavior of SFRC interior beam-column joints under cyclic loading

  • Khalaf, Noor Ayaad;Qissab, Musab Aied
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.167-193
    • /
    • 2020
  • In this paper, the behavior of interior steel fiber reinforced concrete beam - column joints (BCJs) under cyclic loading is investigated. An experimental program including tests on twelve reinforced concrete (BCJs) specimens under cyclic loading was carried out. The test specimens are divided into two groups having different geometry: group (G1) (symmetrical BCJs specimens) and group (G2) (nonsymmetrical BCJs specimens). The parameters considered in this study are the steel fibers (SFs) content by volume of concrete (Vf), the spacing of shear reinforcement at the joint region, and the area of longitudinal flexural reinforcement. Test results show that the addition of 0.5% SFs with stirrups spacing S=Smax has effectively enhanced the overall performance of BCJs with respect to energy dissipation, ductility ratio, spreading and width of cracks. The failure of specimens is governed mainly by the formation of a plastic hinge at the face column and outside the beam-column junction. Secondary shear cracks were also observed in the beam-column junctions.

Self compacting reinforced concrete beams strengthened with natural fiber under cyclic loading

  • Prasad, M.L.V;saha, Prasenjit;Kumar, P.R.
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.597-612
    • /
    • 2016
  • The present work focuses on the use of coconut fiber in self compacting concrete. Self-Compacting Concrete (SCC) is a highly flowable, stable concrete which flows readily into place, filling formwork without any consolidation and without undergoing any significant segregation. Use of fibers in SCC bridge the cracks and enhance the performance of concrete by not allowing cracks to propagate. They contribute to an increased energy absorption compared to plain concrete. Coconut fiber has the highest toughness among all natural fibers. It is known that structures in the seismic prone areas are always under the influence of cyclic loading. To justify the importance of strengthening SCC beams with coir fiber, the present work has been undertaken. A comparison is made between cyclic and static loading of coconut fiber reinforced self compacting concrete (FRSCC) members. Using the test data obtained from the experiment, hysteresis loops were drawn and comparison of envelope curve, energy dissipation, stiffness degradation were made and important conclusions were draw to justify the use of coconut fiber in SCC.