• Title/Summary/Keyword: flexural cracks

Search Result 239, Processing Time 0.022 seconds

Influence of Flowability of Ceramic Tile Granule Powders on Sintering Behavior of Relief Ceramic Tile (과립분말 유동성 변화가 부조세라믹타일의 소결거동에 미치는 영향)

  • Shin, Cheol;Choi, Jung-Hoon;Kim, Jung-Hun;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.550-557
    • /
    • 2020
  • Used in the ceramic tile market as a representative building material, relief ceramic tile is showing increased demand recently. Since ceramic tiles are manufactured through a sintering process at over 1,000 ℃ after uniaxial compression molding by loading granule powders into a mold, it is very important to secure the flowability of granular powders in a mold having a relief pattern. In this study, kaolin, silica, and feldspar are used as starting materials to prepare granule powders by a spray dryer process; the surface of the granule powders is subject to hydrophobic treatment with various concentrations of stearic acid. The effect on the flowability of the granular powder according to the change of stearic acid concentration is confirmed by measuring the angle of repose, tap density, and compressibility, and the occurrence of cracks in the green body produced in the mold with the relief pattern is observed. Then, the green body is sintered by a fast firing process, and the water absorption, flexural strength, and durability are evaluated. The surface treatment of the granule powders with stearic acid improves the flowability of the granule powders, leading to a dense microstructure of the sintered body. Finally, the hydrophobic treatment of the granule powders makes it possible to manufacture relief ceramic tiles having a flexural strength of 292 N/cm, a water absorption of 0.91 %, and excellent mechanical durability.

Evaluation of Load Capacity and Toughness of Porous Concrete Blocks Reinforced with GFRP Bars (GFRP 보강 다공성 콘크리트 블록의 내력 및 인성 평가)

  • Jung, Seung-Bae;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.403-409
    • /
    • 2017
  • In this study, mix proportioning of porous concrete with compressive strength and porosity exceeding 3MPa and 30%, respectively, was examined and then load capacity and flexural toughness of the porous concrete block were evaluated according to the different arrangements of the GFRP bars. To achieve the designed requirements of porous concrete, it can be recommended that water-to-cement ratio and cement-to-coarse aggregate ratio are 25% and 20%, respectively, under the aggregate particle distribution of 15~20mm. The failure mode of porous concrete blocks reinforced with GFRP bars was governed by shear cracks. As a result, very few flexural resistance of the GFRP was expected. However, the enhanced shear strength of porous concrete due to the dowel action of the GFRP bars increased the load capacity and toughness of the blocks. The porous concrete blocks reinforced with one GFRP bar at each compressive and tensile regions had 2.1 times higher load capacity than the companion non-reinforced block and exhibited a high ductile behavior with the ultimate toughness index ($I_{30}$) of 43.4.

Performance Evaluation of Bridge Deck Materials based on Ordinary Portland Cement Concrete (보통 포틀랜드 콘크리트 기반 교면포장 재료 성능 평가)

  • Nam, Jeong-Hee;Jeon, Seong Il;Kwon, Soo Ahn
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.129-137
    • /
    • 2017
  • PURPOSES : The purpose of this study is to develop bridge deck concrete materials based on ordinary Portland cement concrete, and to evaluate the applicability of the developed materials through material properties tests. METHODS : For field implementation, raw material (cement, fine aggregate, and coarse aggregate) properties, fresh concrete properties (slump and air content), strength (compressive, flexural and bond strength) gain, and durability (freeze-thaw resistance, scaling resistance, and rapid chloride penetrating resistance) performance were evaluated in the laboratory. RESULTS : For the selected binder content of $410kg/m^3$, W/B = 0.42, and S/a = 0.48, the following material performance results were obtained. Considering the capacity of the deck finisher, a minimum slump of 150 mm was required. At least 6 % of air content was obtained to resist freeze-thaw damage. In terms of strength, 51.28 MPa of compressive strength, 7.41 MPa of flexural strength, and 2.56 MPa of bond strength at 28 days after construction were obtained. A total of 94.9 % of the relative dynamic modulus of elasticity after 300 cycles of freeze-thaw resistance testing and $0.0056kg/m^2$ of weight loss in a scaling resistance test were measured. However, in a chloride ion penetration resistance test, the result of 3,356 Coulomb, which exceeds the threshold value of the standard specification (1000 Coulomb at 56 days) was observed. CONCLUSIONS : Instead of using high-performance modified bridge deck materials such as latex or silica fume, we developed an optimum mix design based on ordinary Portland cement concrete. A test construction was carried out at ramp bridge B (bridge length = 111 m) in Gim Jai City. Immediately after the concrete was poured, the curing compound was applied, and then wet mat curing was applied for 28 days. Considering the fact that cracks did not occur during the monitoring period, the applicability of the developed material is considered to be high.

Analysis of Crack Width and Deflection Based on Nonlinear Bond Characteristics in Reinforced Concrete Flexural Members (비선형 부착 특성에 기반한 철근콘크리트 휨부재의 균열폭과 처짐 해석)

  • Lee, Gi-Yeol;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.459-467
    • /
    • 2008
  • This paper describes a proposal for average crack width and immediate deflection calculation in structural concrete members. The model is mathematically derived from actual bond stressslip relationships and tension stiffening effect between reinforcement and the surrounding concrete, and the actual strains of steel and concrete are integrated respectively along the embedded length between the adjacent cracks so as to obtain the difference in the axial elongation. With these, a model for average crack width and immediate deflection in reinforced concrete flexural members are proposed utilizing difference in the axial elongation and average steel strain and moment-curvature relationship with taking account of bond characteristics. The model is applied to the test specimens available in literatures, and the crack width and deflections predicted by the proposal equation in this study are closed to the experimentally measured data compared the current code provisions.

Effect of Fiber Addition for Improving the Properties of Lightweight Foamed Concrete (경량 기포콘크리트의 성능향상에 대한 섬유혼입의 영향)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • The objective of this study is to develop mixture proportioning approach of crack controlled lightweight foamed concrete without using high-pressure steam curing processes, as an alternative to autoclaved lightweight concrete blocks (class 0.6 specified in KS). To control thermal cracks owing to hydration heat of cementitious materials, 30% ground granulated blast-furnace slag (GGBS) was used as a partial replacement of ordinary portland cement (OPC). Furthermore, polyvinyl alcohol (PVA) and polyamid (PA) fibers were added to improve the crack resistance of foamed concrete. The use of 30% GGBS reduced the peak value of hydration production rate measured from isothermal tests by 28% and the peak temperature of foamed concrete measured from semi-adiabatic hydration tests by 9%. Considering the compressive strength development, internal void structure, and flexural strength of the lightweight foamed concrete, the optimum addition amount of PVA or PA fibers could be recommended to be $0.6kg/m^3$, although PA fiber slightly preferred to PVA fiber in enhancing the flexural strength of foamed concrete.

Evaluation on Flexural Strength and Shear Strength of RC Beams Extracted from Existing Apartment Housings (기존 공동주택에서 채취한 보의 휨 내력 및 전단내력 평가)

  • You, Young-Chan;Shin, Hyun-Seop;Choi, Ki-Sun;Lim, Byung-Ho;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.75-82
    • /
    • 2010
  • The static strengths of the existing RC beams were experimentally investigated in this paper to understand the strength characteristics of existing structural members and to get appropriate data in strengthening RC members in the remodelling construction. Ten RC beams were prepared by cutting and extracting directly from the demolition site of apartment housings and tested in order to evaluate the flexural and shear strengths of existing RC beams by their geometric condition. From the test results, it was found that most of the specimens had a sufficient structural capacity except for some special case, for example, specimens with severe cracks or concrete losses caused by improper casting. Therefore, the severely deteriorated members originated from bad concrete casting or careless construction process should be repaired and strengthened in remodelling construction.

Experimental Study of Hybrid Super Coating (HSC) and Cast Reinforcement for Masonry Wall (하이브리드 슈퍼코팅(HSC)과 유리섬유를 통한 조적조 내진보강 연구)

  • Lee, Ga Yoon;Moon, A hea;Lee, Seung Jun;Kim, Jae Hyun;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.213-221
    • /
    • 2021
  • Many Korean domestic masonry structures constructed since 1970 have been found to be vulnerable to earthquakes because they lack efficient lateral force resistance. Many studies have shown that the brick and mortar suddenly experience brittle fracture and out-of-plane collapse when they reach the inelastic range. This study evaluated the seismic retrofitting of non-reinforced masonry with Hybrid Super Coating (HSC) and Cast, manufactured using glass fiber. Four types of specimen original specimen (BR-OR), one layered HSC (BR-HS-O), two-layered HSC (BR-HS-B), one layered HSC, and Cast (BR-CT-HS-O) were constructed and analyzed using compression, flexural tensile, diagonal compression, and triplet tests. The specimen responses were presented and discussed in load-displacement curves, maximum strength, and crack propagation. The compressive strength of the retrofit specimens slightly increased, while the flexural tensile strength of the retrofit specimens increased significantly. In addition, the HSC and Cast also produced a considerable increase in the ductile response of specimens before failure. Diagonal compression test results showed that HSC delayed brittle cracks between the mortar and bricks and resulted in larger displacement before failure than the original brick. The triplet test results confirmed that the bonding strength of the retrofit specimens also increased. The application of HSC and Cast was found to restrain the occurrence of brittle failure effectively and delayed the collapse of masonry wall structures.

Evaluation of Performance of CFRP Sheet Reinforcement on RC Members Subjected to Axial Load and Flexural Moment (축력과 휨 모멘트를 받는 RC 부재의 CFRP 시트 보강에 따른 성능 평가)

  • Bae, Chan Young;Lee, Ji Hyeong;Kim, Sang Woo;Kim, Jin Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.567-576
    • /
    • 2023
  • In general, RC beam members are designed as flexural members, considering only the bending load. However, in actual buildings, axial and bending load are simultaneously applied due to the continuity between members. As a result, the bending strength of the RC beam member increases, but the displacement decreases, and cracks are mainly concentrated in the center of the beam. Therefore, in this study, the bending performance of both normal and strengthened RC beam using carbon fiber sheets subjected to combined axial and bending load was experimentally evaluated. The carbon fiber sheets were wrapped around the middle of the specimens, and axial and bending load were applied simultaneously to the beams. The magnitude of the axial force and the effects of carbon fiber sheet reinforcement on the deformed shape, bending strength, deflection, and ductility of the RC beams were analyzed. The results show that as the applied axial force increased, the maximum bending strength increased, but the ductility decreased 64%. The bending strength of the strengthened beams increased up to 27%, the maximum deflection decreased around 8% and the ductility increased by up to 43%.

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.

Develop a sustainable wet shotcrete for tunnel lining using industrial waste: a field experiment and simulation approach

  • Jinkun Sun;Rita Yi Man Li;Lindong Li;Chenxi Deng;Shuangshi Ma;Liyun Zeng
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.333-348
    • /
    • 2023
  • Fast infrastructure development boosts the demand for shotcrete. Despite sand and stone being the most common coarse and fine aggregates for shotcrete, excessive exploration of these materials challenges the ecological environment. This study utilized an industrial solid waste, high-titanium heavy slag, blended with steel fibers to form Wet Shotcrete of Steel Fiber-reinforced High-Titanium Heavy Slag (WSSFHTHS). It investigated its workability, shotcrete performance and mechanical properties under different water-to-cement ratios, fly ash content, superplasticizer dosage, and steel fiber content. The tunnel excavation and support were investigated by conducting finite element numerical simulation analysis and was used in 3 tunnel lining pipes in Zhonggouwan tailing pond. The major findings are as follows: (1) The water-to-cement ratio (w/c ratio) significantly impacted the compressive strength of WSSFHTHS. The highest 28-day compressive strength of 60 MPa was achieved when the w/c ratio was 0.38; (2) Adding fly ash improved the workability and shotcrete performance and strength development of WSSFHTHS. The best anti-permeability performance was achieved when the fly ash constituted 15%, with the lowest permeability coefficient of 4.596 × 10-11 cm/s; (3) The optimum superplasticizer dosage for WSSFHTHS is 0.8%. It provided the best workability and shotcrete performance. Excessive dosage resulted in water bleeding and poor aggregate encapsulation, while insufficient dosage decreased flowability and adversely affected shotcrete performance; (4) The dosage of steel fibers significantly impacted the flexural and tensile strength of WSSFHTHS. When the steel fiber dosage was 45 kg/m3, the 28-day flexural and tensile strengths were 8.95 MPa and 6.15 MPa, respectively; (5) By integrating existing shotcrete techniques, the optimal lining thickness was 80 mm for WSSFHTHS per simulation. The results revealed that after using WSSFHTHS, the displacement of the tunnel surrounding the rock significantly improved, with no cracks or hollows, similar to the simulation results.