• Title/Summary/Keyword: flexural, buckling

Search Result 192, Processing Time 0.029 seconds

Effect of angle stiffeners on the flexural strength and stiffness of cold-formed steel beams

  • Dar, M. Adil;Subramanian, N.;Rather, Amer I.;Dar, A.R.;Lim, James B.P.;Anbarasu, M.;Roy, Krishanu
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.225-243
    • /
    • 2019
  • Cold-formed steel (CFS) sections when used as primary load carrying members often require additional strengthening for retrofitting purposes. In some cases, it is also necessary to reduce deflections in order to satisfy serviceability requirements. The introduction of angle sections, screwed to the webs so as to act as external stiffeners, has the potential to both increase flexural strength as well as reduce deflections. This paper presents the results of ten four-point bending tests, on built-up CFS sections, both open and closed, with different stiffening arrangements. In the laboratory tests, the stiffening arrangements increased the moment capacity and stiffness of the CFS beams by up to 85% and 100% respectively. The increase in moment capacity was more evident for the open sections, while that reduction in deflection was largest for the closed sections.

Programming of Beam/Column Analytical Process for Composite Wall Panels (냉간성형강 스터드 합성벽 패널의 보/기둥 해석기법의 전산화)

  • Lee, Young Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.45-52
    • /
    • 2005
  • The object of this study was a cold-formed steel wall stud panel sheathed by gypsum boards. In the beam-analysis, the panel was treated as a simple beam with a uniform lateral loading. The deflections were calculated by considering the primary factors that reduced the stiffness of the panel. In the column-analysis, the panel was treated as a bearing wall with an axial load. By using an energy method, nominal axial strength could be evaluated by considering both flexural buckling and torsional-flexural buckling. All calculations were programmed and compared with the results of the experiment. In the beam-analysis, experimental deflections were close to theoretical deflections. In the column-analysis, the experimental values were also close to theoretical values in axial strength.

Parametric Instability of Cylinderical Panels (주기적(週基的)인 압축하중을 받는 원통(円筒) Panel의 동적(動的) 불안정(不安定) 특성(特性)에 관한 연구)

  • Park, Sung Jin;Mikami, Takashi
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.737-748
    • /
    • 2000
  • This paper presents a numerical analysis procedure and a characteristics for dynamic of cylindrical panels. The panels with simply-simply or simply-clamped edge supports are subjectes to circumferential compressive or flexural stresses. The differential equations governing vibration and dynamic for these panels are derived by using the fundamental differential equation of the Love-Timoshenko and are solved numerically by the Galerkin method. The panel with simply-clamped edge supports is used a trigonometric function or an eigen function of a beam as a trial function and the effects of trial functions on numerical solutions are displayed. Numerical results are presented to demonstrate the effects of the flexural parameters in natural frequencies and coefficients of critical buckling, and some typical mode shapes of vibration and buckling are also presented.

  • PDF

Experiments for the Buckling Behavior of Reinforced Concrete Columns (철근콘크리트 기둥의 좌굴거동에 관한 실험적 연구)

  • 조성찬;장정수;김진근;김윤용;김광석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.284-289
    • /
    • 1993
  • To analyze the effects of compressive strength of concrete and longitudinal steel ratio on buckling behavior of columns, 36tied reinforced concrete columns with hinged ends were tested. The 100mm square cross section was used and the amount of eccentricity was 10mm. The compressive strengths of column specimens with slenderness ratios of 15, 30 and 50 were 202, 513 and 752 kg/$\textrm{cm}^2$. The longitudinal steel ratio of columns with bending about a section diagonal and about a principal axis were 2.85%(4-D10). The ratio of ultimate load capacity to that of short column with the same eccentricity was much decreased at high slenderness ratio with increasing the compressive strength of concrete. And the lateral displacement of column at the ultimate load was decreased as the strength was increased. These are due to that at high slenderness ratio, the load capacity and behavior of column are affected by flexural rigidity. And, it was also found that for the same quantity of confining steel and level of axis load, there is little difference between the flexural strength for bending about a section diagonal and for bending about principal axis.

  • PDF

Structural Steel as Boundary Elements in Ductile Concrete Walls

  • Cho, Soon-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.73-84
    • /
    • 2000
  • A new form of construction utilizing structural steel as the boundary elements in ductile flexural concrete walls is proposed to solve the bar congestion problems in such a heavily reinforced region, while maintaining the ductility and energy absorption capacity comparable to their traditional form. Two wall specimens containing rectangular hollow structural sections (HSS) and channels at their ends respectively, and one companion standard reinforced concrete wall specimen with concentrated end reinforcement were constructed and tested under reversed cyclic loading to evaluate the construction process as well as the structural performance. Initially, all three specimens were chosen and detailed with some caution to have approximately the same flexural capacity without change of the original shape and dimension of a rectangular cross section correction. Analysis and comparison of test results indicated that the reversed cyclic responses of three walls showed similar hysteretic properties, but in those with steel boundaries, local buckling of the corresponding steel webs and flanges following significant yielding was a dominant factor to determine the hysteretic response. The monotonic and cyclic responses predicted based on a sectional approach was also presented and found to be in good agreement with measured results. Design recommendations considering local instability of the structural steel elements and the interaction between steel chords and a concrete web member in such a composite wall are presented.

  • PDF

Minimum stiffness of bracing for multi-column framed structures

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.305-325
    • /
    • 1998
  • A method that determines the minimum stiffness of baracing to achieve non-sway buckling conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid, and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional properties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the flexural bucking capacity; and 5) the flexural and torsional end restrains of the columns. The proposed method is limited to elastic framed structures with columns of doubly symmetrical cross section with their principal axes parallel to the global axes. However, it can be applied to inelastic structures when the nonlinear behavior is concentrated at the end connections. The effects of axial deformations in beams and columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed method.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

A Survey on the Fuzzy Control Systems with Learning/Adaptation Capability (학습/적응력을 갖는 퍼지제어시스템들에 관한 고찰)

  • 김용태;이연정;이승하;정태신;변증남
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.11-35
    • /
    • 1995
  • In this paper the fuzzy extension for the classical engineering mechanics problems is studied. The governing differential equation is derived for the buckling loads of the columns with uncertain mediums: the their own weight and the flexural rigidity. The columns with one typical end constraint(hinged1 clarnped/free) and the other finite rotational spring with fuzzy constant are considered in numerical examples. The vertex method is used to evaluate the fuzzy functions. The Runge-Kutta method and Determinant Search method are used to solve the differential equation and determine the buckling loads, respectively. The membership functions of the buckling load are calculated. The index of fuzziness to quantitatively describe the propagation of fuzziness is defined. According to the fuzziness of governing factors, the varlation of index of fuzziness for buckling load is investigated, and the sensitivity for the end constraints is analyzed.

  • PDF

Rayleigh-Ritz procedure for determination of the critical load of tapered columns

  • Marques, Liliana;Da Silva, Luis Simoes;Rebelo, Carlos
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.45-58
    • /
    • 2014
  • EC3 provides several methodologies for the stability verification of members and frames. However, when dealing with the verification of non-uniform members in general, with tapered cross-section, irregular distribution of restraints, non-linear axis, castellated, etc., several difficulties are noted. Because there are yet no guidelines to overcome any of these issues, safety verification is conservative. In recent research from the authors of this paper, an Ayrton-Perry based procedure was proposed for the flexural buckling verification of web-tapered columns. However, in order to apply this procedure, Linear Buckling Analysis (LBA) of the tapered column must be performed for determination of the critical load. Because tapered members should lead to efficient structural solutions, it is therefore of major importance to provide simple and accurate formula for determination of the critical axial force of tapered columns. In this paper, firstly, the fourth order differential equation for non-uniform columns is derived. For the particular case of simply supported web-tapered columns subject to in-plane buckling, the Rayleigh-Ritz method is applied. Finally, and followed by a numerical parametric study, a formula for determination of the critical axial force of simply supported linearly web-tapered columns buckling in plane is proposed leading to differences up to 8% relatively to the LBA model.