• Title/Summary/Keyword: flexible substrates

Search Result 381, Processing Time 0.024 seconds

Fabrication of High Ordered Nano-sphere Array on Curved Substrate by Nanoimprint Lithography (나노임프린트 리소그래피를 이용한 곡면 기판 위에 정렬된 나노 볼 패턴 형성에 관한 연구)

  • Hong, S.H.;Bae, B.J.;Kwak, S.U.;Lee, H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.331-334
    • /
    • 2008
  • The replica of highly ordered nano-sphere array patterns were fabricated using hot embossing method. First, silica nano-sphere array on Si substrate was transferred to PVC film at $130^{\circ}C$ and 7 bar using hot embossing process. Then, silica nano-sphere array on PVC template was removed by soaking the PVC film in buffered oxide etcher. In order to form anti-stiction layer, the PVC template was coated with silicon dioxide layer and self-assembled monolayer. Through UV nanoimprint lithography with the fabricated flexible PVC template, highly ordered nano-sphere array pattern was imprinted on curved substrates with high fidelity.

The effects of thermal expension properties of flexible metal substrates on the Si thin film (금속 연성기판재의 열팽창 특성이 Si 박막 층에 미치는 영향)

  • Lee, Min-Su;Yim, Tai-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.367-369
    • /
    • 2009
  • 플렉서블 태양전지용 연성기판재에는 플라스틱재와 금속재가 있다. 기존의 연성기판인 플라스틱의 경우 열과, 내구성, 화학약품에 약하다는 단점이 있으며, 금속기판은 높은 생산원가, 박판화의 어려움 등의 문제를 안고 있다. 일반적으로 기판재와 cell을 구성하는 반도체 층의 열팽창 거동 차이에 의한 열 변형이 태양전지의 공정안정성에 영향을 주는 것으로 알려져 있으며, cell을 구성하는 반도체 층과 열팽창 거동이 유사한 금속기판재의 적용이 필요하다. Si 박막 태양전지의 경우 Si 열팽창 거동과 비슷한 특성을 갖는 기판재의 개발이 필요하다. 전주법을 적용하여 조성이 다른 Ni계 합금의 열팽창 거동을 TMA 장비를 사용하여 측정하였다. 그리고 전산해석 Tool을 활용하여 가상의 Si 박막 태양전지 제조공정을 설정하고 고온 공정온도에서 상온으로 냉각시 발생되는 층간 열변형 연구를 수행하였고 열팽창 거동이 다른 합금 상에 Si층을 증착하여 열 충격에 의한 결함 발생여부를 관찰하였다.

  • PDF

A Roll-to-Roll Process for Manufacturing Flexible Active-Matrix Backplanes Using Self-Aligned Imprint Lithography and Plasma Processing

  • Taussig, Carl;Jeffrey, Frank
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.808-810
    • /
    • 2005
  • Inexpensive large area arrays of thin film transistors (TFTs) on flexible substrates will enable many new display products that cannot be cost effectively manufactured by conventional means. This paper presents a new approach for low cost manufacturing of electronic devices using roll-to-roll (R2R) processes exclusively. It was developed in partnership by Hewlett Packard Laboratories and Iowa Thin Film Technologies (ITFT), a solar cell manufacturer. The approach combines ITFT's unique processes for vacuum deposition and etching of semiconductors, dielectrics and metals on continuous plastic webs with a method HP has invented for the patterning and aligning the multiple layers of a TFT with sub-micron accuracy and feature size.

  • PDF

Stamping Method for Fabrication of Flexible Liquid Crystal Display

  • Jang, Se-Jin;Jin, Min-Young;Kim, Hak-Rin;Lee, You-Jin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.374-377
    • /
    • 2005
  • We proposed a new fabrication method for stable flexible LCDs using stamping method with durable elastomer such as poly(dimethylsiloxane) (PDMS). In the device, the LC molecules are isolated in pixels where LCs are surrounded by PDMS microstructure, and two substrates are tightly attached by phase separated polymer layer. The electro-optic characteristics of our cell are comparable to those of normal sample without PDMS microstructure. We propose cost-effective roll-to-roll process for large size of plastic LCDs with our method.

  • PDF

Recent Progress in Flexible Perovskite Solar Cell Development

  • Ren, Xiaodong;Jung, Hyun Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.325-336
    • /
    • 2018
  • Perovskite solar cells (PSCs) are a new class of photovoltaic devices, which have attracted significant attention due to their remarkable optoelectrical properties, including high absorption coefficients, high carrier mobilities, long carrier diffusion lengths, tunable bandgaps, low cost, and facile fabrication. PSCs have reached efficiencies of 22.70% and 18.36% on rigid fluorine-doped tin oxide and poly(ethylene terephthalate) substrates, respectively; these are comparable to those of single-crystal silicon and copper-indium-gallium-selenium solar cells. Over the past eight years, the photo conversion efficiency of PSCs has been significantly improved by device-architecture adjustments, and absorber and electron/hole transport layer optimization. Each layer is important for the performance of PSCs; hence, we discuss achievements in flexible perovskite solar cells (FPSCs), covering electron/hole-transport materials, electrode materials. We give a comprehensive overview of FPSCs and put forward suggestions for their further development.

Growth of Aluminum Doped Zinc Oxide Films on Polymer Substrates for Flexible Display Applications

  • Lee, Jae-Hyeong;Lee, Jong-In
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.219-222
    • /
    • 2007
  • Highly conductive and transparent aluminum doped ZnO thin films (AZO) films have been prepared by r.f. magnetron sputtering processes on poly carbonate (PC) and onto glass as reference. In addition, the electrical, optical properties of the films prepared at various sputtering powers were investigated. The XRD measurements revealed that all of the obtained films were polycrystalline with the hexagonal structure and had a preferred orientation with the c-axis perpendicular to the substrate. The ZnO:Al films were increasingly dark gray colored as the sputter power increased, resulting in the loss of transmittance. High quality films with the resistivity as low as $9.7{\times}10^{-4}\;{\Omega}-cm$ and transmittance over 90% have been obtained by suitably controlling the r.f. power.

The Analysis of the Characteristics according to Polymer Concentration for Polymer Light Emitting Diode Fabricated on Flexible Substrates

  • Cho, Woo-Jin;Kim, Su-Hwan;Kang, Byoung-Ho;Kim, Do-Eok;Kang, Shin-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.752-755
    • /
    • 2007
  • In this paper, to compare thermal and chemical stabilities of poly-ethylene-terephtalate (PET) and polyether- surphone (PES), we fabricated Polymer Light Emitting Diode (PLED) on each substrate and analyzed these characteristics. Moreover, we analyzed the characteristics of the device deposited LiF (1 nm) before cathode deposition.

  • PDF

Analysis of Low Power Consumption AMOLED Displays on Flexible Stainless Steel Substrates

  • Hack, Mike;Hewitt, Richard;Ma, Ray;Brown, Julie J.;Choi, Jae-Won;Cheon, Jun-Hyuk;Kim, Se-Hwan;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.58-61
    • /
    • 2007
  • We present simulations and results to demonstrate the viability of stainless steel foil as a substrate for low power consumption, flexible AMOLED displays. Using organic planarization layers, we achieve very smooth surface properties, resulting in excellent TFT performance, that can be repetitively flexed without significantly affecting device performance. The use of phosphorescent OLEDs enables the design of low power consumption 40" AMOLED displays.

  • PDF

Electric Circuit Fabrication Technology using Conductive Ink and Direct Printing

  • Jeong, Jae-U;Kim, Yong-Sik;Yun, Gwan-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • For the micro conductive line, memory device fabrication process use many expensive processes such as manufactur-ing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because nano-metal particles contained inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as FPCB, PCB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line on flexible PCB substrate for the next generation electronic circuit using Ag nano-particles contained ink. To improve the line tolerance on flexible PCB, metal lines are fabricated by sequential prinitng method. Sequential printing method has vari-ous merits about fine, thick and high resolution pattern lines without bulge.

  • PDF

Improvement of Electrical Conductivity of Transparent Conductive Single-Walled Carbon Nanotube Films Fabricated by Surfactant Dispersion

  • Lee, Seung-Ho;Kim, Myoung-Su;Goak, Jeung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.17-17
    • /
    • 2009
  • Single-walled carbon nanotubes (SWCNTs) have attracted much attention as promising materials for transparent conducting films (TCFs), thanks to their superior electrical conductivity, high mechanical strength, and complete flexibility. The CNT-based TCFs can be used in a variety of application fields as flexible, transparent electrodes, including touch panel screens, flexible electronics, transparent heaters, etc. First of all, this study investigated the effect of a variety of surfactants on the dispersion of SWCNTs in an aqueous solution. Following the optimization of the dispersion by surfactants, flexible TCFs were fabricated by spraying the CNT suspension onto poly(ethylene terephthalate) (PET) substrates. The sheet resistances of the TCFs having different surfactants were investigated with treatment in nitric acid ($HNO_3$) whose concentration and period of treatment time were varied. It seems that the $HNO_3$ removes the surfactants from and is simultaneously doped into the SWCNT network, reducing the contact resistance between CNTs. TCFs were characterized by UV-VIS spectroscopy, thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), and four-point probe.

  • PDF