• Title/Summary/Keyword: flexible substrates

Search Result 381, Processing Time 0.03 seconds

Fabrication of Highly Efficient Nanocrystalline Silicon Thin-Film Solar Cells Using Flexible Substrates (유연기판을 이용한 고효율 나노결정질 실리콘 박막 태양전지 제조)

  • Jang, Eunseok;Kim, Sol Ji;Lee, Ji Eun;Ahn, Seung Kyu;Park, Joo Hyung;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.103-109
    • /
    • 2014
  • Highly efficient hydrogenated nanocrystalline silicon (nc-Si:H) thin-film solar cells were prepared on flexible stainless steel substrates using plasma-enhanced chemical vapor deposition. To enhance the performance of solar cells, material properties of back reflectors, n-doped seed layers and wide bandgap nc-SiC:H window layers were optimized. The light scattering efficiency of Ag back reflectors was improved by increasing the surface roughness of the films deposited at elevated substrate temperatures. Using the n-doped seed layers with high crystallinity, the initial crystal growth of intrinsic nc-Si:H absorber layers was improved, resulting in the elimination of the defect-dense amorphous regions at the n/i interfaces. The nc-SiC:H window layers with high bandgap over 2.2 eV were deposited under high hydrogen dilution conditions. The vertical current flow of the films was enhanced by the formation of Si nanocrystallites in the amorphous SiC:H matrix. Under optimized conditions, a high conversion efficiency of 9.13% ($V_{oc}=0.52$, $J_{sc}=25.45mA/cm^2$, FF = 0.69) was achieved for the flexible nc-Si:H thin-film solar cells.

Improvement of Reliability of Low-melting Temperature Sn-Bi Solder (저융점 Sn-Bi 솔더의 신뢰성 개선 연구)

  • Jeong, Min-Seong;Kim, Hyeon-Tae;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Recently, semiconductor devices have been used in many fields owing to various applications of mobile electronics, wearable and flexible devices and substrates. During the semiconductor chip bonding process, the mismatch of coefficient of therm al expansion (CTE) between the substrate and the solder, and the excessive heat applied to the entire substrate and components affect the performance and reliability of the device. These problems can cause warpage and deterioration of long-term reliability of the electronic packages. In order to improve these issues, many studies on low-melting temperature solders, which is capable of performing a low-temperature process, have been actively conducted. Among the various low-melting temperature solders, such as Sn-Bi and Sn-In, Sn-58Bi solder is attracting attention as a promising low-temperature solder because of its advantages such as high yield strength, moderate mechanical property, and low cost. However, due to the high brittleness of Bi, improvement of the Sn-Bi solder is needed. In this review paper, recent research trends to improve the mechanical properties of Sn-Bi solder by adding trace elements or particles were introduced and compared.

Effect of Oxygen Pressure on the Electrical Properties of ZnO Transparent Thin Films on Flexible Teflon Substrate (산소압력이 테프론 휨성 기판위에 형성된 ZRO 투명박막의 전기적 특성에 미치는 영향)

  • Suh Kwang Jong;Chang Ho Jung
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.271-274
    • /
    • 2005
  • We investigated the crystalline and electrical properties of ZnO thin films for transparent electrode as a function of the oxygen pressures during the deposition. The ZnO thin films were deposited on a flexible teflon substrates by the pulsed laser deposition. From the X-ray diffraction, ZnO films showed c axis oriented ZnO(0002) crystal structure. The FWHM (full width at half maximum) values decreased from $0.51^{\circ}\;to\;0.34^{\circ}$ as the oxygen pressure increased from 0.1 mTorr to 10.0 mTorr showing the improvement of crystallinity. The resistivity and hall mobility of ZnO film deposited at the oxgen pressure of 0.1 mTorr at $200^{\circ}C$ was about $5\times10^{-4}\Omega{\cdot}cm\;and\;20cm^2/V{\cdot}s$, respectively. The optical transmittance of the ZnO films on flexible teflon substrate was found to be above $85\%$.

Fabrication of Flexible Passive Matrix by Using Silicon Nano-ribbon (실리콘 나노리본을 이용한 유연한 패시브 매트릭스 소자 제작)

  • Shin, Gun-Chul;Ha, Jeong-Sook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.338-341
    • /
    • 2011
  • Thin silicon ribbon was used for fabricating flexible silicon p-i-n junction devices, consisting of 100${\times}$100 arrays of pixels in 1 inch on the diagonal. Those passive matrix devices exhibited the rectification ratio $>10^{4}$ owing to smaller cross-talking current than that of p-n junction devices. P-i-n devices fabricated on silica/silicon substrates are easily detached by treatment with hydrofluoric acid and are subsequently transferred onto both PDMS and flexible PET film.

Effects of Sputtering Pressure on the Properties of BaTiO3 Films for High Energy Density Capacitors

  • Park, Sangshik
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.207-213
    • /
    • 2014
  • Flexible $BaTiO_3$ films as dielectric materials for high energy density capacitors were deposited on polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The growth behavior, microstructure and electrical properties of the flexible $BaTiO_3$ films were dependent on the sputtering pressure during sputtering. The RMS roughness and crystallite size of the $BaTiO_3$ increased with increasing sputtering pressure. All $BaTiO_3$ films had an amorphous structure, regardless of the sputtering pressures, due to the low PET substrate temperature. The composition of films showed an atomic ratio (Ba:Ti:O) of 0.9:1.1:3. The electrical properties of the $BaTiO_3$ films were affected by the microstructure and roughness. The $BaTiO_3$ films prepared at 100 mTorr exhibited a dielectric constant of ~80 at 1 kHz and a leakage current of $10^{-8}A$ at 400 kV/cm. Also, films showed polarization of $8{\mu}C/cm^2$ at 100 kV/cm and remnant polarization ($P_r$) of $2{\mu}C/cm^2$. This suggests that sputter deposited flexible $BaTiO_3$ films are a promising dielectric that can be used in high energy density capacitors owing to their high dielectric constant, low leakage current and stable preparation by sputtering.

Effects of Roll-to-Roll Sputtering Conditions on the Properties of Flexible TiO2 Films

  • Park, Sang-Shik
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.190-196
    • /
    • 2014
  • Flexible $TiO_2$ films were deposited as dielectric materials for high-energy-density capacitors on polyethylene terephthalate (PET) substrates using a roll-to-roll sputtering method. Both the growth behavior and electrical properties of the flexible $TiO_2$ films were dependent on the sputtering pressure and $O_2$/Ar gas ratio during the sputtering process. All $TiO_2$ films had an amorphous structure regardless of the sputtering conditions due to the low substrate temperature. Microstructural characteristics such as the surface morphology and roughness of the films degraded with an increase in the sputtering pressure and $O_2$ gas concentration. The $TiO_2$ films deposited at a low pressure showed better electrical properties than those of films deposited at a high pressure. The $TiO_2$ films prepared at 10 mTorr exhibited a dielectric constant of approximately 90 at 1 kHz and a leakage current density of $5{\sim}6{\times}10^{-7}A/cm^2$ at 3 MV/cm.

Fabrication of thin Film Transistor on Plastic Substrate for Application to Flexible Display (Flexible 디스플레이로의 응용을 위한 플라스틱 기판 위의 박막트랜지스터의 제조)

  • 배성찬;오순택;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.481-485
    • /
    • 2003
  • Amorphous silicon (a-Si:H) based TFT process has been studied at the maximum temperature of 15$0^{\circ}C$ with 25${\mu}{\textrm}{m}$ thick flexible and adhesive tape type polyimide foil substrate, which has benefit on handling a rugged, flexible plastic substrate trough sticking simply it to glass. This paper summarize the process procedure of the TFT on the plastic substrate and shows its electrical characteristics in comparison with glass substrate using primarily the ON/OFF current ratio and the field effect mobility as the quality criterion. The a-SiN:H coating layer played an important role in decreasing surface roughness of plastic substrate, so leakage current of TFT was decreased and mobility was increased. The results show that high quality a-Si:H TFTs can be fabricated on the plastic substrates through coating a rough plastic surface with a-SiN:H.

Manufactured Flexible Active Matrix Backplanes using Self-Alighed Imprint Lithography (SAIL)

  • Kwon, Oh-Seung;Marcia-Almanza-Workman, Marcia-Almanza-Workman;Braymen, Steve;Cobene, Robert;Elder, Richard;Garcia, Robert;Gomez-Pancorbo, Fernando;Hauschildt, Jason;Jackson, Warren;Jam, Mehrban;Jeans, Albert;Jeffrey, Frank;Junge, Kelly;Kim, Han-Jun;Larson, Don;Luo, Hao;Maltabes, John;Mei, Ping;Perlov, Craig;Smith, Mark;Stieler, Dan;Taussig, Carl
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.138-141
    • /
    • 2009
  • Progress in the development of a fully roll-to-roll selfaligned imprint process for producing active matrix backplanes with submicron aligned features on flexible substrates is reported. High performance transistors, crossovers and addressable active matrix arrays have been designed and fabricated using imprint lithography. Such a process has the potential of significantly reducing the costs of large area displays. The progress, current status and remaining issues of this new fabrication technology are reported.

  • PDF

Continuous Roll-to-Roll(R2R) sputtering system for growing flexible and transparent conducting oxide electrode at room temperature

  • Park, Yong-Seok;Jeong, Jin-A;Park, Ho-Kyun;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1575-1577
    • /
    • 2009
  • We have investigated the characteristics of transparent indium zinc oxide(IZO)/Ag/IZO multilayer electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible device are described. By the continuous R2R sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, we were able to fabricate an IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ${\Omega}$/square, optical transmittance of 87.4 %, and figure of merit value of 42.03 10-3 ${\Omega}$-1. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the RTR sputter grown single ITO electrode, due to the existence a ductile Ag layer between the IZO layers. This indicates that the RTR sputtered IZO-Ag-IZO multilayer is a promising flexible electrode that can substitute for the conventional single ITO electrode grown by bath type sputtering for use in low cost flexible device, due to its low resistance, high transparency, superior flexibility and fast preparation by the R2R process.

  • PDF

Low Temperature Chemical Vapor Deposition of BNO Thin Films for Flexible Electronic Device Applications (유연성 전자소자 적용을 위한 BNO박막의 저온화학기상증착)

  • Jeon, Sang-Yong;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.42-42
    • /
    • 2007
  • In the future, electronic components will be integrated on flexible polymer substrates and then miniaturized by thin films using suitable thin film technologies. In this article, the concept of a room temperature CVD is demonstrated using $Bi_3NbO_7$ (BNO) films with a cubic fluorite structure and their structural and electrical properties were investigated in films deposited without substrate heating. Effects of substrate temperature on electrical properties of BNO films were also studied. Films deposited without substrate heating (real temperature of $50^{\circ}C$) show partially crystallized BNO single phases with grain size of approximately 6.5 nm. Their dielectric and leakage properties are comparable to those of films deposited by pulsed laser deposition at room temperature. The concept of room temperature CVD will become a new paradigm in the deposition of dielectric thin films for flexible electron device applications.

  • PDF