• Title/Summary/Keyword: flexible plastic displays

Search Result 50, Processing Time 0.026 seconds

Commercialization of Microencapsulated Electrophoretic Displays

  • McCreary, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.524-524
    • /
    • 2006
  • For decades, the pursuit of volume commercialization of low-power reflective displays with a paper-like look has been an unfulfilled dream. While steady technical progress was made throughout the late 1990s, there were still no volume products incorporating electronic paper displays (EPD) on the market. Now, microencapsulated electrophoretic display technology, also called electronic ink, has moved into volume production with a frontplane laminate (FPL) display component called E Ink Imaging Film™. This film is coated roll to roll on a flexible plastic substrate and integrated into a display module. Today, all-plastic segmented displays are being shipped as well as displays with electronic ink FPL being driven by glass TFT backplanes. A roadmap to active matrix flexible electrophoretic displays is being enabled by rapid technical progress on flexible TFT backplanes by a variety companies. Each of the approaches to these backplanes and flexible active matrix displays has different advantages for the various market segments being pursued including large format flexible displays for e-news and other reader applications, rollable displays for compact readers, and high resolution small format displays up to 400 ppi that can have fully integrated drive electronics to reduce size and drive down costs. Backplane approaches include Si on plastic, organic transistors on plastic, and Si transistors on flexible stainless steel substrate. Progress is also being made on next generation inks, including more reflective inks with higher contrast ratios. A full color 6 inch, 170 pixel per inch (PPI) active matrix display using a newer generation ink has been developed and this will be described and demonstrated. Large format segmented flexible displays will also be described.

  • PDF

New Techniques for Fabrication of Flexible Plastic LCD's

  • West, John.L.;Novotny, Grea R.;Fisch, Michael R.;Heinman, David
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.15-18
    • /
    • 2001
  • We report simple techniques to manufacture low-powered, high-resolution, reflective cholesteric displays using flexible plastic substrates. We use wax transfer printing to replace photo-lithography and incorporate polymer walls to increase the mechanical strength and lifetime of the displays. These printing methods can easily be adapted to roll-to-roll production.

  • PDF

Organic Light Emitting Transistors for Flexible Displays

  • Kudo, Kazuhiro;Endoh, Hiroyuki;Watanabe, Yasuyuki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.137-140
    • /
    • 2005
  • Organic light emitting transistors (OLET) which are vertically combined with the organic static induction transistor (OSIT) and organic light emitting diode (OLED) are fabricated and the device characteristics are investigated. High luminance modulations by relatively low gate voltages are obtained. In order to realize the flexible electronic circuits and displays, we have fabricated OSIT on plastic substrates. The OSIT fabricated on plastic substrate show almost same characteristics comparing with those of nonflexible OSIT on glass substrate. The OLET described here is a suitable element for flexible sheet displays.

  • PDF

Suftla Flexible Active-Matrix Electrophoretic Displays

  • Miyasaka, Mitsutoshi;Nebashi, Satoshi;Shimoda, Tatsuya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.466-469
    • /
    • 2006
  • We have developed the world's thinnest flexible electrophoretic displays (EPDs). The thin-film displays are 95 ..m thick, which is nearly the same thickness as a standard sheet of paper. Weighing 0.44g including external connection cables, these displays are also probably the world's lightest. We have also developed 7.1-inch-diagonal(paperback-sized) high-resolution flexible EPDs. The displays are large enough to be used as practical e-paper. More than 7 million transistors work correctly on plastic, enabling us to see 3-megapixel images. These flexible displays include active-matrix TFT devices that are fabricated using Suftla transfer technology. Suftla technology demonstrates the potential to achieve thin, flexible displays that will be used as an e-paper in the near future.

  • PDF

Flexible Display i Low Temperature Processes for Plastic LCDs

  • Han, Jeong-In
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.10-14
    • /
    • 2003
  • Flexible displays such as plastic-based liquid crystal displays (LCDs) and organic light-emitting diode displays (OLEDDs) have been researched and developed at KETI since 1997. The plastic film substrate is very weak to heat and pressure compared to glass substrate, that its fabrication process is limited to 110$^{\circ}C$ and low pressure. The ITO films were deposited on the bare plastic film substrate by rf-magnetron sputtering. Moreover, in order to maintain uniform cell gap and pressure on the plastic film substrate, we utilized newly-invented jig and fabrication process. Electro-optical characteristics were better than or equivalent to those of typical glass LCDs though it is thinner, lighter-weight, and more robust than glass LCDs.

Development of $Binem^{(R)}$ Displays on Flexible Plastic Substrates

  • Barron, Cecile;Angele, Jacques;Bajic, Lorenzo;Dozov, Ivan;Leblanc, Francois;Perny, Sebastien;Specht, Jorg;Brill, Jochen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.289-292
    • /
    • 2004
  • We have successfully fabricated $Binem^{(R)}$ displays on thin flexible plastic substrates. The fabrication is based on the standard $Binem^{(R)}$ process for glass which has been adapted to plastic with new materials and technologies. The first application is targeted to an embedded display for smart card products.

  • PDF

Plastic Displays Made by Standard ${\alpha}$-Si TFT Technology

  • Battersby, Steve;Ian, French
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1546-1549
    • /
    • 2006
  • We have developed $EPLaR^{TM}$, a new way of making flexible electrophoretic displays. The TFTs have the same good performance, reliability and mature manufacturing processes as TFTs used in LCD monitors and LCD-TVs. We are working with partners to show that plastic displays can be made in existing TFT-LCD factories alongside glass LCDS. In this talk we describe the EPLaR process and show results for TFT arrays on plastic made in a factory by standard ${\alpha}$-Si TFT processing.

  • PDF

Overview of Flexible Display Technology Why, What and When

  • Pinnel, M.Robert
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.227-230
    • /
    • 2005
  • The concepts of flexible displays and plastic electronics have become some of the most talked about new product opportunities for direct view flat panel displays in recent years. The potential advantages are frequently cited, but the achievement of commercially viable products will require many significant technological innovations in new materials and manufacturing technology. This paper will provide a very broad overview of the rationale for developing flexible displays, the market drivers, the applicable display technologies, the major hurdles that must be overcome and the required evolution of new manufacturing technologies that are essential for successful commercialization. This is intended to provide the outline and context for the series of presentations on specific aspects in each of these topics that will be delivered and discussed at the Plastic Electronics Special Session of the 2005 IMID conference.

  • PDF

Flexi-e: Side-by-Side Manufacturing of Flexible Displays and Glass TFT-LCDs

  • French, Ian;Shinn, Ted Hong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1005-1008
    • /
    • 2008
  • Electronic Paper Displays (EPDs) incorporating electrophoretic foils have made digital reading as pleasant as reading normal print. We will report on progress to replace glass-based displays with light and robust plastic EPDs using only a few extra process steps in a standard TFT-LCD factory.

  • PDF

Advances in Microencapsulated Electrophoretic Ink for Flexible Electronic Paper Displays

  • McCreary, Michael D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.234-235
    • /
    • 2005
  • True electronic paper displays are being enabled by the development of two core technologies - plastic electronics for display backplanes and electrophoretic ink for use as the imaging layer. Electrophoretic ink developed by E Ink Corporation continues to advance performance along with parallel technology breakthroughs in flexible TFT backplanes. An overview of these advances in the ink imaging material will be discussed with special emphasis of the expected impact on the emerging flexible display applications.

  • PDF