• 제목/요약/키워드: flexible motion control

검색결과 203건 처리시간 0.028초

외란 추정기를 이용한 유연 매니퓰레이터의 선단 위치제어 (Tip Position Control of Flexible Manipulator Using Disturbance Estimator)

  • 김상열;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.219-224
    • /
    • 2001
  • An accurate tip position control of a single-link flexible manipulator subjected to torque disturbance is achieved by utilizing so called sliding mode controller with disturbance estimation (SMCDE). After formulating the governing equation of motion in the state 1pace representation, a stable sliding surface is designed via the LQR method. The SMCDE is then synthesized by integrating equivalent sliding mode controller with the disturbance estimator which is featured by an integrated average value of the imposed disturbance over a certain sampling period. The regulating tip motion of the flexible manipulator is evaluated by employing the proposed SMCDE.

  • PDF

유연 로보트팔의 동특성 해석에 관한 연구 (A Study on the Dynamic Analysis for Flexible Robotic Arms)

  • 김창부;유영선
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.107-116
    • /
    • 1993
  • In the design and operation of robitic arm with flexible links, the equation of motion are required to exactly model the interaction between rigid body motion and elastic motion and to be formulated efficientlyl. In this paper, the flexible link is represented by applying the D-H rigid link representation method to measure the elestic deformation. And the equations of motion of robotic arm, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated from the principle of virtual power. Dynamic characteristics due to elastic deformation of each link are obtained by using F. E. M to model complex shaped link acurately and by eliminating elastic modes of higher order that do not largely affect motion to reduce the number of elastic degrees of freedom. Also presented is the result of simulation of flexible robotic arms whose joints are controlled by direct or PD control.

  • PDF

유연한 수평 다관절 로봇의 진동제어 (Vibration Control of Flexible SCARA Robots)

  • 임승철;용대중
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.387-392
    • /
    • 1997
  • This paper concerns a SCARA robot with the flexible forearm linked to the rigid upper arm. The equations of motion are derived by the Lagrangian mechanics. For controller design, the perturbation approach is taken to separate the original equations of motion into linear equations describing small perturbed motions and nonlinear equations describing purely rigid motion of the robot. To effect the desired payload motion, open loop control inputs are determined based on the inverse dynamics of the latter. In order to reduce the positional error during maneuver, an active vibration suppression is done. To this end, a feedback control is designed for robustness against disturbance on the basis of the linear equations and the LQR theory modified to have a prescribed degree of stability. The proposed control scheme shows satisfactory performances in experiments as well as in numerical simulations.

  • PDF

유연한 수평 다관절형 로봇의 진동제어 (Vibration control of a flexible SCARA type robot)

  • 용대중;임승철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.225-228
    • /
    • 1996
  • This paper concerns a SCARA type robot with the second arm flexible. Its equations of motion are derived by the Lagrangian mechanics. For controller design, the perturbation approach is taken to separate the original equations of motion into linear equations describing small perturbed motions and nonlinear equations describing purely rigid motion of the robot. To effect the desired payload motion, open loop control inputs are first determined based on the inverse dynamics of the latter. Next, in order to reduce the positional error during maneuver, an active vibration suppression is done. To this end, a feedback control is designed for robustness against disturbance on the basis of the linear equations and the LQR theory modified with a prescribed degree of stability. The numerical simulations results show the satisfactory control performance.

  • PDF

슬라이딩 모우드 제어에 기초한 유연한 2링크 조작기의 진동제어 (Vibration Control of a Flexible Two-link Manipulator based on the Sliding Mode Control)

  • 채승훈;양현석;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.511-516
    • /
    • 2000
  • In order to not only perform as a extreme model under the severe operating condition but also acquire more diverse and advanced control capability utilizing high compliance, active vibration control of a flexible 2-link robot manipulator are investigated. Multi variable-structured frequency shaped optimal sliding mode is proposed for the flexible robot manipulator like control system, whose control variables, an angular motion of joint and vibration of flexible link, have to be controlled simultaneously by one control torque at a driving joint. The control system is divided into two subsystems, a control input related subsystem and an added subsystem. The proposed sliding mode, composed of multi control variables, makes optimized relation between subsystems and a individual control input, thus, the sliding mode controller can compensate whole dynamics of each subsystems simultaneously. And the possibility and effectiveness are verified by vibration control of a manipulator having two flexible links. Simulation and experiment results show that the proposed control scheme achieves the purpose effectively.

  • PDF

Flexible Motion Realized by Force-free Control: Pull-Out Work by an Articulated Robot Arm

  • Kushida, Daisuke;Nakamura, Masatoshi;Goto, Satoru;Kyura, Nobuhiro
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.464-473
    • /
    • 2003
  • A method for force-free control is proposed to realize pull-out work by an industrial articulated robot arm. This method achieves not only non-gravity and non-friction motion of an articulated robot arm according to an exerted force but also reflects no change in the structure of the servo controller. Ideal performance of a pull-out work by the force-free control method was assured by means of simulation and experimental studies with a two-degree-of-freedom articulated robot arm.

Positioning and vibration suppression for multiple degrees of freedom flexible structure by genetic algorithm and input shaping

  • Lin, J.;Chiang, C.B.
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.347-365
    • /
    • 2014
  • The main objective of this paper is to develop an innovative methodology for the vibration suppression control of the multiple degrees-of-freedom (MDOF) flexible structure. The proposed structure represented in this research as a clamped-free-free-free truss type plate is rotated by motors. The controller has two loops for tracking and vibration suppression. In addition to stabilizing the actual system, the proposed feedback control is based on a genetic algorithm (GA) to seek the primary optimal control gain for tracking and stabilization purposes. Moreover, input shaping is introduced for the control scheme that limits motion-induced elastic vibration by shaping the reference command. Experimental results are presented, demonstrating that, in the control loop, roll and yaw angles track control and elastic mode stabilization. It was also demonstrated that combining the input shaper with the proportional-integral-derivative (PID) feedback method has been shown to yield improved performance in controlling the flexible structure system. The broad range of problems discussed in this research is valuable in civil, mechanical, and aerospace engineering for flexible structures with MDOM motion.

유연한 XY 위치결정 시스템을 위한 강인 동작 제어기 설계 (Robust Motion Controller Design for Flexible XY Positioning Systems)

  • 김봉근;박상덕;정완균;염영일
    • 제어로봇시스템학회논문지
    • /
    • 제9권1호
    • /
    • pp.82-89
    • /
    • 2003
  • A robust motion control method is proposed fur the point-to-point position control of a XY positioning system which consists of a base cart, elastic ben and moving mass. The horizontal motion controller consists of the feedforward controller to suppress the single mode vibration of the elastic beam and the feedback controller to get the high-accuracy positioning performance of the base cart. Input preshaping vibration suppression method based on system modeling with analytic frequency equation is proposed and integrated into the robust internal-loop compensator(RIC) to increase the robustness of the whole closed-loop system The vertical motion controller is proposed based on the dual RIC structure. Through experiments, it is shown that the proposed method can stabilize the system and suppress the vibration in the presence of uncertainties and disturbances.

구속받는 3차원 유연 매니퓰레이터의 컴플라이언스 해석 (Compliance Analysis of Constrained Spatial Flexible Manipulators)

  • 김진수
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.91-96
    • /
    • 2006
  • The aim of this paper is to clarify the structural compliance of the constrained spatial flexible manipulator and to develop the force control by using the compliance of the links. Using the dependency of elastic deflections of links on contact force, vibrations for constrained vertical motion have been suppressed successfully by controlling the position of end-effector. However, for constrained horizontal motion, the vibrations cannot be suppressed by only controlling position of end-effector. We present the experimental results for constrained vertical motion, and constrained horizontal motion. Finally, a comparison between these results is presented to show the validity of link compliance.

여유자유도 유연 매니퓰레이터의 위치제어 (Position Control of a Redundant Flexible Manipulator)

  • 김진수
    • 한국공작기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.83-89
    • /
    • 2001
  • In this paper, we discuss the vibration suppression control of spatial redundant flexible manipulators through pseudo-inversed of Jacobian. In order to verify our method, the experiments are performed for PTP(Point To Point) motion of spa-tial flexible manipulators(1) with no redundancy(2) with one redundant DOF(degree of freedom). Finally, a comparison between these results is presented to show the performance of out approach.

  • PDF