• 제목/요약/키워드: flexible membrane

Search Result 131, Processing Time 0.029 seconds

The Modeling and Adaptive fuzzy control of Electrostrictive Polymer for endoscopic microcapsule (체내이동형 마이크로 캡술형 내시경 로봇을 위한 Electrostrictive Polymer의 모델링 및 Adaptive fuzzy 알고리듬 개발)

  • Hwang, Kyo-Il;Kim, Hun-Mo;Choi, Hyouk-Yeol;Nam, Jae-Do;Jeon, Jae-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.716-722
    • /
    • 2001
  • In this paper, the modeling and control of electrostrictive polymer is introduced for endoscopic microcapsule. The endoscopic microcapsule works in the body, so the material of robot must be no harmful to the body. The electrostrictive polymer satisfies this condition. The modeling and control of endoscope microcapsule must be processed. So the modeling and control of electrostrictive was processed preferentially. The electrostrictive polymer is so flexible that we considered the electrostrictive polymer as flexible membrane. The dynamic equation of flexible membrane is time variant in electrostrictive polymer. It is the reason that the elastic modulus of electrostrictive polymer is very small and changes as deformation of electrostrictive polymer. The control algorithm must overcome these characteristics. So the algorithm of adaptive fuzzy control was used to control. In this paper, we introduced the dynamic modeling and control of electrostrictive polymer. And its deformation is introduced.

  • PDF

Wave-blocking Efficiency of a Horizontal Porous Flexible Membrane

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • 본 논문에서는 투과성 유연막이 수면밑 일정한 깊이에 수평으로 잠겨있을 때 투과성 유연막에 의한 파랑제어성능을 살펴보았다. 해석 방법으로는 유체문제는 고유함수전개법 (Eigenfunction expansion method)을 사용하였고, 유연막과 파랑의 상호작용문제는 Newmann 이 제시한 유탄성 이론 (hydro-elastic theory)을 채택하였다. 막의 투과성 효과를 고려하기 위하여 수평막에서의 수직속도는 수평막 상하의 압력차에 선형적으로 비례하며 그들 사이에는 위상차가 없다고 가정한 Darcy 법칙을 사용하였다. 투과성 수평막의 설계변수 (초기장력, 길이, 잠긴 깊이, 공극율)와 입사파의 주파수를 바꿔가면서 반사율과 투과율 그리고 에너지 손실율을 살펴보았다.

Application of tube-type ceramic microfiltration membrane for post-treatment of effluent from biological wastewater treatment process using phase separation

  • Son, Dong-Jin;Kim, Woo-Yeol;Yun, Chan-Young;Kim, Dae-Gun;Chang, Duk;Sunwoo, Young;Hong, Ki-Ho
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.377-383
    • /
    • 2017
  • A tube-type ceramic membrane for microfiltration was developed, and the membrane module comprised of three membranes was also applied to biological carbon and nitrogen removal processes for post-treatment. Manufacturing the microfiltration membrane was successful with the structure and boundary of the coated and support layers within the membrane module clearly observable. Total kjeldahl nitrogen removal from effluent was additionally achieved through the elimination of solids containing organic nitrogen by use of the ceramic membrane module. Removal of suspended solids and colloidal substances were noticeably improved after membrane filtration, and the filtration function of the ceramic membrane could also easily be recovered by physical cleaning. By using the ceramic membrane module, the system showed average removals of organics, nitrogen, and solids up to 98%, 80% and 99.9%, respectively. Thus, this microfiltration system appears to be an alternative and flexible option for existing biological nutrient removal processes suffering from poor settling performance due to the use of a clarifier.

Fabrication of Biofuel Cell Roll Using Flexible CNT Nanosheet Substrate (유연한 CNT Nanosheet 기판을 이용한 생체연료전지 Roll 제작)

  • Sung, Jungwoo;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.388-391
    • /
    • 2014
  • The most promising application of the biofuel cells is implantable devices, so the biofuel cells should have an appropriate shape for the vascular vessel. We demonstrated the biofuel cell roll for using in tubes. MWNTs were aggregated by vacuum filtration on a nitrocellulose membrane filter, which was biocompatible and flexible. The MWNT aggregated nitrocellulose membrane used the electrodes of the biofuel cells because it was conductive as well as nanostuructured. Then, the membrane was rolled into the roll shape. The maximum power density of the biofuel cell roll was $7.9{\mu}W/cm^2$ at 153mV and 50 mM glucose. Also, the power density is expected to increase in its practical application if there is flow in the tube, which makes the transportation of fuel easy. The biofuel cell roll contacts with the wall of the tube, so flow in the tube does not disturb. Also, the biofuel cell roll has multi-layers offering more electroactive area.

Force density ratios of flexible borders to membrane in tension fabric structures

  • Asadi, H.;Hariri-Ardebili, M.A.;Mirtaheri, M.;Zandi, A.P.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.

Modeling of Anisotropic Creep Behavior of Coated Textile Membranes

  • Yu Woong-Ryeol;Kim Min-Sun;Lee Joon-Seok
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.123-128
    • /
    • 2006
  • The present study aims at characterizing and modeling the anisotropic creep behavior of coated textile membrane, a class of flexible textile composites that are used for moderate span enclosures (roofs and air-halls). The objective is to develop a creep model for predicting the lifetime of coated textile membrane. Uniaxial creep tests were conducted on three off-axis coupon specimens to obtain the directional creep compliance. A potential with three parameters is shown to be adequate for modeling the anisotropic creep behavior of coated textile membrane. Furthermore, a possibility of predicting the creep deformation of coated textile membrane in a multi-axial stress state is discussed using the three-parameter potential.

A study on the structural behaviors of air-pressurized vertical arch (공기로 지지되는 수직 아치의 구조거동에 관한 연구)

  • 김재열;이장복;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.274-279
    • /
    • 1998
  • The structural behaviors of a arch composed of flexible membrane are investigated. The membrane is considered as thin shell with internal pressure during FEM analysis by using ABAQUS. In the paper, a wind load and uniformly distributed vertical load are considered. As a vertical load, snow loads including applied over all and half of the structure are introduced. The ends of arch are fixed to the ground. Load-Deflections relationship, buckling mode of the structure are presented.

  • PDF

Nonlinear Analysis of Curved Cable-Membrane Roof Systems (굴곡형 케이블-막 지붕 시스템의 비선형 해석)

  • Park, Kang-Geun;Kwun, Ik-No;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.45-55
    • /
    • 2017
  • The objective of this study is to estimate the mechanical characteristics and nonlinear behaviors on the geometric nonlinear analysis of curved cable-membrane roof systems for long span lightweight roof structures. The weight of a cable-membrane roof dramatically can reduce, but the single layer cable-membrane roof systems are too flexible and difficult to achieve the required structural stiffness. A curved cable roof system with reverse curvature works more effectively as a load bearing system, the pretension of cables can easily increase the structural stiffness. The curved cable roof system can transmit vertical loads in up and downward direction, and work effectively as a load bearing structure to resists self-weights, snow and wind loads. The nonlinear behavior and mechanical characteristics of a cable roof system has greatly an affect by the sag and pretension. This paper is carried out analyzing and comparing the tensile forces and deflection of curved roof systems by vertical loads. The elements for analysis uses a tension only cable element and a triangular membrane element with 3 degree of freedom in each node. The authors will show that the curved cable-membrane roof system with reverse curvature is a very lightweight and small deformation roof for external loads.

A Study on the Stabilizing Process and Structural Characteristics of Cable-Dome Structure (케이블돔 구조물의 안정화 이행과정 및 구조적 거동특성에 관한 연구)

  • 한상을;이경수;이주선;황보석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.260-267
    • /
    • 1999
  • In this paper, We propose the initial shape finding and dynamic analysis of cable dome structure are presented. Cable dome that is consist of three component such as cable, strut and fabric membrane have complex structural characteristics. Main structural system of cable dome is cable-strut tensegric system, and fabric membrane element Is conceived as cladding roof material. One of the important problem of cable dome is shape finding of those subjected to cable and membrane forces, which stabilize the structures. And the other is structural response from external load effect such as snow and wind When cable dome are subjected to dynamic load such as wind load each structural component has many important problem because of their special structural characteristics. One problem is that geometrical nonlinearity should be considered in the dynamic analysis because large deformation is occurred from their flexible characteristic. The other problem is that wrinkling occurs occasionally because cable and membrane elements can not transmit compressive forces. So this paper describe the physical structural response of cable dome structure.

  • PDF

High-Performance and Fabrication of Graphene-based Flexible Supercapacitor

  • Ra, Eun Ju;Han, Jae Hee;Kim, Kiwoong;Lee, Sun Suk;Kim, Tae-Ho;An, Ki-Seok;Lim, Jongsun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.442-442
    • /
    • 2014
  • Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, is one of the most promising energy-storage devices because of its high power density, super-high cycle life, and safe operation. We herein report a synthesis of graphene-based flexible films by kneading method. Thus, a device can be readily made by sandwiching a polymer membrane included ionic liquid electrolytes between two identical graphene-based flexible films. Devices made with these electrodes exhibit ultrahigh energy density values while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-energy, flexible electronics.

  • PDF