• Title/Summary/Keyword: flexible manufacturing technology

검색결과 335건 처리시간 0.024초

유연생산 시스템 모델플랜트 MASFLEX-NX의 개발

  • 성창민
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.1-5
    • /
    • 1996
  • As the manufacturing system becomes more complicated and flexible there is a strong trend of having effective flexible manufacturing system in modern manufacturing. Furthermore it seems that competitiveness of an enterprise is dependent upon. to some extent the effectiveness of flexible manufacturing system.

  • PDF

범위의 경제를 고려한 유연생산기술의 최적 용량투자 및 생산계획 (Optimal Investment of Capacity and Production Planning of Flexible Manufacturing Technology Considering Economies of Scope)

  • 이덕주
    • 대한산업공학회지
    • /
    • 제31권2호
    • /
    • pp.135-142
    • /
    • 2005
  • This study addresses the problem of flexible technology acquisition in a multi-product market when demands are uncertain. We confine the concept of flexibility to the ability of manufacturing system to produce a number of different types of products, called a product-mix flexibility type. And an analytical model in which the economies of scope are incorporated explicitly as a feature of flexible technology is presented to find the optimal investment decision to acquire flexible technology and optimal production planning. The characteristics of optimal investment strategy related to capacity and production planning are discussed.

범위의 경제를 고려한 유연생산시스템의 최적 용량 투자 및 생산 계획 (Optimal Investment of Capacity & Production Planning of Flexible Manufacturing System Considering Economies of Scope)

  • 이덕주
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2004년도 추계학술대회 및 정기총회
    • /
    • pp.229-244
    • /
    • 2004
  • This study addresses the problem of flexible technology acquisition in multi-product market when demands are uncertain. We confine the concept of flexibility to the ability of manufacturing system to produce a number of different types of products, called product-mix flexibility type. And an analytical model in which economies of scope is incorporated explicitly as a feature of flexible technology is presented to find the optimal investment decision to acquire flexible technology and optimal production planning. The characteristics of optimal investment strategy related to capacity and production planning are discussed.

  • PDF

이기종 멀티 셀 유연생산환경에서의 실시간 통합운용을 위한 공정관리 체계 (Process Management Systems for Integrated Real-Time Shop Operations in Heterogeneous Multi-Cell Based Flexible Manufacturing Environment)

  • 윤주성;남성호;백재용;권기억;이동호;이석우
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.281-286
    • /
    • 2013
  • As the product lifecycle is getting shorter and various models should be released to respond to the needs of customers and markets, automation-based flexible production line has been recognized as the core competitiveness. According to these trends, system vendors supply cell-level systems such as FMC(Flexible Manufacturing Cell) that is integration of core functions of FMS(Flexible Manufacturing System) and RMC(Reconfigurable Manufacturing Cell) that can easily extend components of FMC. In the cell-based environment, flexible management for shop floor composed of existing job shop, FMCs and RMCs from various system vendors has emerged as an important issue. However, there could be some problems on integrated operation between heterogeneous cells to use vendor-specific cell controllers and on seamless information flow with high level systems such as ERP(Enterprise Resource Planning). In this context, this paper proposes process management systems supporting integrated shop operation of heterogeneous multi-cell based flexible manufacturing environment: First of all, (1) Integrated Shop Operation System to apply the process management system is introduced, and (2) Multi-Layer BOP(Bill-Of-Process) model, a backbone of the process management system, is derived with its data structure. Finally, application of the proposed model is illustrated through system implementation results.

가변성형기술을 활용한 항공기 윙렛용 몰드 제작에 관한 수치적 연구 (Numerical Study of Aircraft Winglet Mold Manufacturing using Flexible Forming)

  • 박지우;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제23권8호
    • /
    • pp.482-488
    • /
    • 2014
  • Flexible forming technology has advantages in sheet metal forming, because it can be implemented to produce various shaped molds using a single apparatus. Due to this advantage, it is possible to apply it to the manufacture of an aircraft winglet mold. Presently, most aircraft winglets are manufactured from composite materials. Therefore, the mold for the curing process is an essential element in the fabrication of such composite materials. Compared to conventional mold forming, flexible forming has some advantages such as reduced manufacturing cost and uniformity of mold thickness. If the thickness of the mold is consistent, then the heat transfer will occur uniformly during the curing process leading to improved formability of the composite material. In the current study, numerical simulations were performed to investigate the possibility of flexible forming for manufacturing of the winglet mold. In order to match the size of the actual product, the shape of objective surface was divided to fit the dimensions of the apparatus. The results from the numerical simulations are compared with the objective surface to verify the accuracy. In conclusion, the current study confirms the feasibility and the potential to manufacture winglet molds by flexible forming.

Inkjet Technology and Products for Flexible Display Manufacturing

  • Schoeppler, Martin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.179-181
    • /
    • 2008
  • Major display equipment suppliers introduced equipment using inkjets for manufacturing steps such as printing polyimide alignment layers and color filters. This paper discusses how inkjets can be used in the development of flexible displays and materials printing systems designed to meet the challenges of fluids and process development.

  • PDF

유연기판을 위한 나노임프린트리소그래피 시스템 설계 (Design and Implementation of Nanoimprint Lithography System for Flexible Substrates)

  • 임형준;이재종;최기봉;김기홍;류지형
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.513-520
    • /
    • 2011
  • The NIL processes have been studied to implement low cost, high throughput and high resolution application. A RNIL(roller NIL) is an alternative approach to flat nanoimprint lithography. RNIL process is necessary to transfer patterns on flexible substrates. Compared with flat NIL, RNIL has the advantages of better uniformity, less pressing force, and the ability to repeat the patterning process continuously on a large substrate. This paper studies the design, construction and verification of a thermal RNIL system. The proposed RNIL system can easily adopt the flat shaped hot plate which is one of the most important technologies for NIL. The NIL system can be used to transfer patterns from a flexible stamp to a flexible substrate, from a flexible stamp to a Si substrate, and from a roller stamp to a flexible substrate, etc. Patterning on flexible substrates is one of the key technologies to produce bendable displays, solar cells and other applications.

FDM 3D프린팅 기반 유연굽힘센서 (Fused Deposition Modeling 3D Printing-based Flexible Bending Sensor)

  • 이선곤;오영찬;김주형
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.63-71
    • /
    • 2020
  • Recently, to improve convenience, flexible electronics are quickly being developed for a number of application areas. Flexible electronic devices comprise characters such as being bendable, stretchable, foldable, and wearable. Effectively manufacturing flexible electronic devices requires high efficiency, low costs, and simple processes for manufacturing technology. Through this study, we enabled the rapid production of multifunctional flexible bending sensors using a simple, low-cost Fused Deposition Modeling (FDM) 3D printer. Furthermore, we demonstrated the possibility of the rapid production of a range of functional flexible bending sensors using a simple, low-cost FDM 3D printer. Accurate and reproducible functional materials made by FDM 3D printers are an effective tool for the fabrication of flexible sensor electronic devices. The 3D-printed flexible bending sensor consisted of polyurethane and a conductive filament. Two patterns of electrodes (straight and Hilbert curve) for the 3D printing flexible sensor were fabricated and analyzed for the characteristics of bending displacement. The experimental results showed that the straight curve electrode sensor sensing ability was superior to the Hilbert curve electrode sensor, and the electrical conductivity of the Hilbert curve electrode sensor is better than the straight curve electrode sensor. The results of this study will be very useful for the fabrication of various 3D-printed flexible sensor devices with multiple degrees of freedom that are not limited by size and shape.

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • 제11권4호
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.