• Title/Summary/Keyword: flexible electrophoretic display

Search Result 28, Processing Time 0.033 seconds

Commercialization of Microencapsulated Electrophoretic Displays

  • McCreary, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.524-524
    • /
    • 2006
  • For decades, the pursuit of volume commercialization of low-power reflective displays with a paper-like look has been an unfulfilled dream. While steady technical progress was made throughout the late 1990s, there were still no volume products incorporating electronic paper displays (EPD) on the market. Now, microencapsulated electrophoretic display technology, also called electronic ink, has moved into volume production with a frontplane laminate (FPL) display component called E Ink Imaging Film™. This film is coated roll to roll on a flexible plastic substrate and integrated into a display module. Today, all-plastic segmented displays are being shipped as well as displays with electronic ink FPL being driven by glass TFT backplanes. A roadmap to active matrix flexible electrophoretic displays is being enabled by rapid technical progress on flexible TFT backplanes by a variety companies. Each of the approaches to these backplanes and flexible active matrix displays has different advantages for the various market segments being pursued including large format flexible displays for e-news and other reader applications, rollable displays for compact readers, and high resolution small format displays up to 400 ppi that can have fully integrated drive electronics to reduce size and drive down costs. Backplane approaches include Si on plastic, organic transistors on plastic, and Si transistors on flexible stainless steel substrate. Progress is also being made on next generation inks, including more reflective inks with higher contrast ratios. A full color 6 inch, 170 pixel per inch (PPI) active matrix display using a newer generation ink has been developed and this will be described and demonstrated. Large format segmented flexible displays will also be described.

  • PDF

TFT Technology for Flexible Display Applications

  • Kim, Chang-Dong;Kang, In-Byeong;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1767-1770
    • /
    • 2007
  • The key development issues in the flexible displays are TFT backplane technology for their various applications, which requires competitive device performance as well as its low temperature process. In this paper, with shortly reviewing recent flexible display development status, we describe technical trends of low-temperature a-Si TFTs. Our TFTs show good device characteristics enough to apply LCD and electrophoretic display.

  • PDF

Advances in Microencapsulated Electrophoretic Ink for Flexible Electronic Paper Displays

  • McCreary, Michael D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.234-235
    • /
    • 2005
  • True electronic paper displays are being enabled by the development of two core technologies - plastic electronics for display backplanes and electrophoretic ink for use as the imaging layer. Electrophoretic ink developed by E Ink Corporation continues to advance performance along with parallel technology breakthroughs in flexible TFT backplanes. An overview of these advances in the ink imaging material will be discussed with special emphasis of the expected impact on the emerging flexible display applications.

  • PDF

Flexible OTFT-Backplane for Active Matrix Electrophoretic Display Panel

  • Lee, Myung-Won;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.159-161
    • /
    • 2007
  • We fabricated flexible OTFT-backplanes for the electrophoretic display(EPD). The OTFTs employed bottom contact structure on PEN substrate and used the cross-linked polyvinylphenol for gate insulator, pentacene for active layer. Especially, we used PVA/Acryl double layers for passivation of backplane as well as for pixel dielectric layer between backplane and EPD panel. The OTFT-EPD panel worked successfully anddemonstrated to display some patterns.

  • PDF

Flexible Microelectronics; High-Resolution Active-Matrix Electrophoretic Displays

  • Miyazaki, Atsushi;Kawai, Hideyuki;Miyasaka, Mitsutoshi;Nebashi, Satoshi;Shimoda, Tatsuya;McCreary, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.575-579
    • /
    • 2005
  • A beautiful, flexible active-matrix electrophoretic display (AM-EPD) device is reported. The flexible AM-EPD device has a $40.0{\times}30.0\;mm^2$ display area, measures about 0.27 mm in thickness, weighs about 0.45 g and possesses only 20 external connections. The flexible AM-EPD device displays clear black-and-white images with 5 gray-scales on $160{\times}120$ pixels. The display is free from residual image problems, because we use an area-gray-scale method on $320{\times}240$ EPD elements, each of which is driven with binary signals. Each pixel consists of 4 EPD elements. In addition, since the response time of the electrophoretic material is as long as approximately 400 ms and since the display possesses a large number of EPD elements, we have developed a special driving method suitable for changing EPD images comfortably. A complete image is formed on the AM-EPD device, consisting of a reset frame and several, typically 6, image frames.

  • PDF

Flexi-e: Side-by-Side Manufacturing of Flexible Displays and Glass TFT-LCDs

  • French, Ian;Shinn, Ted Hong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1005-1008
    • /
    • 2008
  • Electronic Paper Displays (EPDs) incorporating electrophoretic foils have made digital reading as pleasant as reading normal print. We will report on progress to replace glass-based displays with light and robust plastic EPDs using only a few extra process steps in a standard TFT-LCD factory.

  • PDF

Stability of Low Temperature a-Si:H TFT on Stainless Steel Substrate

  • Kim, Sung-Hwan;Kim, Sang-Soo;Park, Yong-In;Peak, Seung-Han;Lee, Kyoung-Mook;Park, Choon-Ho;Lim, Yu-Sok;Kim, Chang-Dong;Kang, In-Byeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.247-249
    • /
    • 2008
  • Low Temperature a-Si:H TFT on stainless steel substrate has been developed for the flexible electrophoretic display. Stability of low temperature a-Si:H TFT is more important point than its initial device characteristics. Thus, we have studied device characteristics of low temperature a-Si:H TFT in terms of stability for driving electrophoretic display.

  • PDF

Direct Fabrication of a-Si:H Thin Film Transistor Arrays on Flexible Substrates: Critical Challenges and Enabling Solutions

  • O'Rourke, Shawn M.;Loy, Douglas E.;Moyer, Curt;Bawolek, Edward J.;Ageno, Scott K.;O'Brien, Barry P.;Marrs, Michael;Bottesch, Dirk;Dailey, Jeff;Naujokaitis, Rob;Kaminski, Jann P.;Allee, David R.;Venugopal, Sameer M.;Haq, Jesmin;Colaneri, Nicholas;Raupp, Gregory B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1459-1462
    • /
    • 2008
  • In this paper we describe solutions to address critical challenges in direct fabrication of amorphous silicon thin film transistor (TFTs) arrays for active matrix flexible displays. For all flexible substrates a manufacturable handling protocol in automated display-scale equipment is required. For metal foil substrates the principal challenges are planarization and electrical isolation, and management of stress (CTE mismatch) during TFT fabrication. For plastic substrates the principal challenge is dimensional instability management.

  • PDF

Flexible Active-Matrix Electrophoretic Display With Integrated Scan-And Data-Drivers

  • Miyazaki, Atsushi;Kawai, Hideyuki;Miyasaka, Mitsutoshi;Inoue, Satoshi;Shimoda, Tatsuya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.153-156
    • /
    • 2004
  • A newly developed flexible active-matrix (AM-) electrophoretic display (EPD) is reported. The AM-EPD features: (1) low-temperature polycrystalline silicon (LTPS) thin film transistor (TFT) technology, (2) fully integrated scan- and data-drivers, (3) flexibility and light-weight realized by transferring the whole circuits onto a plastic substrate using $SUFTLA^{TM}$ (Surface Free Technology by Laser Annealing/Ablation) process. A large storage capacitor is formed in each pixel so that driving electric field can be kept sufficiently strong during a writing period Two-phase driving scheme, a reset-phase which erases a previous image and a writing-phase for writing a new image, was chosen to cope with EPD's high driving voltage. The flexible AM-EPD has been successfully operated with a driving voltage of 8.5 V.

  • PDF

Electrophoretic Display employing OTFT-Backplane on plastic substrate

  • Ryu, Gi-Seong;Lee, Myung-Won;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1178-1181
    • /
    • 2006
  • We fabricated a flexible OTFT(organic thin film transistor) backplane for the electrophoretic display. The backplane was composed of $128{\times}96pixels$ on the Polyethylene Naphthalate substrate in which each pixel had one OTFT. The OTFTs employed bottom contact structure and used the cross-linked polyvinylphenol for gate insulator and pentacene for active layer

  • PDF