• Title/Summary/Keyword: flexible composite resin

Search Result 18, Processing Time 0.024 seconds

Examples of clinical applications of flexible composite resin that is quite different from conventional composite resins (Conventional composite resin과 사뭇 다른 flexible composite resin의 여러 임상 활용 예)

  • Kim, Woohyun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.92-102
    • /
    • 2020
  • Bond-Fill SB is made of powder/liquid, and the flowability can be controlled by adjusting the amount of liquid in the brush. Thanks to the strong catalyst called TBB, it has the advantage of being able to polymerize even in the presence of water and oxygen. Also, since it contains 4-META, it has the advantage of being able to adhere to metals and ceramics with appropriate surface treatment. If you fully understand these advantages, you can actively utilize them in cases where it is difficult to treat with conventional composite resin.

Patch-type large strain sensor using elastomeric composite filled with carbon nanofibers

  • Yasuoka, Tetsuo;Shimamura, Yoshinobu;Todoroki, Akira
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.146-151
    • /
    • 2013
  • Carbon nanofibers (CNFs) are electrically conductive. When CNFs are used as fillers in resin, this electrical conductivity can be yielded without adversely affecting the mechanical properties of the resin. When an elastomer is adopted as the resin, a conductive elastomer can then be produced. Due to its flexibility and conductive properties, a large strain sensor based on changes in resistivity may be produced, for strain sensing in flexible structures. In this study, a patch-type large strain sensor using resistivity change in a CNF/elastomer composite was proposed. The measurement limits of the sensor were investigated experimentally, and the limit was found to be 40%, which greatly exceeded the limits of conventional metal-foiled strain gages. Also, the proposed CNF/elastomer large strain sensor can be used to measure flexible materials, while conventional strain gages cannot be used to measure such strains.

Effect of surface treatments on the bond strength of indirect resin composite to resin matrix ceramics

  • Celik, Ersan;Sahin, Sezgi Cinel;Dede, Dogu Omur
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • PURPOSE. The purpose of this study was to evaluate the shear bond strength (SBS) of an indirect resin composite (IRC) to the various resin matrix ceramic (RMC) blocks using different surface treatments. MATERIALS AND METHODS. Ninety-nine cubic RMC specimens consisting of a resin nanoceramic (RNC), a polymer-infiltrated hybrid ceramic (PIHC), and a flexible hybrid ceramic (FHC) were divided randomly into three surface treatment subgroups (n = 11). In the experimental groups, untreated (Cnt), tribochemical silica coating (Tbc), and Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser irradiation (Lsr) with 3 W (150 mJ/pulse, 20 Hz for 20 sec.) were used as surface treatments. An indirect composite resin (IRC) was layered with a disc-shape mold ($2{\times}3mm$) onto the treated-ceramic surfaces and the specimens submitted to thermal cycling (6000 cycles, $5-55^{\circ}C$). The SBS test of specimens was performed using a universal testing machine and the specimens were examined with a scanning electron microscope to determine the failure mode. Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tukey HSD test (${\alpha}=.05$). RESULTS. According to the two-way ANOVA, only the surface treatment parameter was statistically significant (P<.05) on the SBS of IRC to RMC. The SBS values of Lsr-applied RMC groups were significantly higher than Cnt groups for each RMC material, (P<.05). Significant differences were also determined between Tbc surface treatment applied and untreated (Cnt) PIHC materials (P=.039). CONCLUSION. For promoting a reliable bond strength during characterization of RMC with IRC, Nd:YAG laser or Tbc surface treatment technique should be used, putting in consideration the microstructure and composition of RMC materials and appropriate parameters for each material.

Trenchless Repairing-Reinforcing Process of Underground Pipes with Advanced Composite Materials (신소재 복합재료를 이용한 비굴착 지하매설관 보수-보강공법)

  • 진우석;권재욱;이대길;유애권
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.43-48
    • /
    • 2001
  • To overcome the disadvantages of conventional excavation technology, various trenchless (or excavation free, or no-dig) repair-reinforcement technologies have been developed and tried. But trenchless technologies so fat developed have some brawbacks such as high cost and inconvenience of operation. In this study, a repairing-reinforcing process for underground pipes with glass fiber fabric polymer composites using VARTM(Vacuum Assisted Resin Transfer Molding) has been developed. The developed process requires shorter operation time and lower cost with smaller and simpler operating equipments than those of the conventional trenchless technologies. For the reliable operation of the developed method, a simple method to apply pressure and vacuum to the reinforcement was devised and flexible mold technology was tried. Also, resin filling and cure status during RTM process were monitored with a commercial dielectrometry cure monitoring system, LACOMCURE. From the investigation, it has been found that the developed repairing-reinforcing technology with appropriate process variables and on-line cure monitoring has many advantages over conventional methods.

  • PDF

Synthesis of conducting and magnetic nanocomposite of cross-linked aniline sulfide resin

  • Hosseini, Seyed Hossein
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.233-242
    • /
    • 2014
  • Magnetic and conducting aniline sulfide resin cross-linked (ASC-Fe3O4) nanocomposite has been prepared in the presence of aniline sulfide resin (ASR), aniline, $Fe_3O_4$ coated by polyethylene glycol (PEG) and initiator. The magnetic properties of the resulting composites showed ferromagnetic behavior, such as high-saturated magnetization (Ms= 41 emu/g), and coercive force (Hc=1.5 Oe). The saturated magnetization was increased by increasing of $Fe_3O_4$ content and decreased by increasing aniline ratio. The transmission electron micrograph (TEM) and X-ray diffraction proved that nanometer-sized about 20-30 nm $Fe_3O_4$ in the composite. The average size of ASC-$Fe_3O_4$ nanocomposite with core-shell structure was about 50-60 nm, and polydisperse. This approach may also be extended to the synthesis and modification of other polymers. Electrical conductivity of aniline sulfide resin cross-linked (ASC) nanocomposite has been studied by four-point probe method and produced $3.3{\times}10^{-4}S/cm$ conductivity for it. The conductivity of the composites at room temperature depended on the $Fe_3O_4$, aniline ratio and doping degree. The thermogravimetry analysis (TGA) results showed that this resin is thermal resistance near of $500^{\circ}C$. So, It can be used for resistance thermal coating for military applications. $Fe_3O_4$-PASC nanocomposite has been flexible structure with electrical and magnetic properties.

A Study on The Electrical and Mechanical Characteristics due to accelerated degradation of Cycloaliphatic Epoxy Composites (CYCLOALIPHATIC 애폭시 복합재료의 가속열화에 미치는 전기적 및 기계적 특성에 관한 연구)

  • Kim, Hee-Gon;Cho, Han-Goo;Park, Yong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1323-1326
    • /
    • 1994
  • the application of epoxy composite materials for outdoor insulating systems has some significant advantages compared with conventional inorganic materials, that is low weight in combination with high mechanical strength, small dimensions and design versatility. The experimental results for the basis composition and interlace characteristics of the matrix resin/inorganic fillers($SiO_2$) which are the composite materials have been studied. The electrical characteristics(electrical breakdown, dielectric, insulating resistivity, tracking) and mechanical characteristics( tensile strength, elongation, flexible strength) in the epoxy composite materials have been studied. The life of the epoxy composite material was evaluated by accelerated Weather-Ometer test and the degradation process due to outdoor exposure condition is discussed with respect to the mechanical and electrical properties.

  • PDF

Analysis of the Physical Properties of the Conductive Paste according to the Type of Binder Resin and Simulation of Mechanical Properties according to Ag Flake Volume Fraction (바인더 수지 종류에 따른 도전성 페이스트의 물성 분석 및 Ag flake 부피 분율에 따른 기계적 특성 시뮬레이션 연구)

  • Sim, Ji-Hyun;Yun, Hyeon-Seong;Yu, Seong-Hun;Park, Jong-Su;Jeon, Seong-Min;Bae, Jin-Seok
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.69-74
    • /
    • 2022
  • In this study, the conductive paste used in a wide range such as wiring in the electronic packaging field, the automobile industry, and electronic products is manufactured under various process conditions due to the simplicity of the process, and then the thermal, mechanical, and electrical characteristics are analyzed and simulation studies are conducted to optimize the process. to establish the conditions of the conductive paste manufacturing process. First, a conductive paste was prepared by setting various types of binder resin, an essential component of the conductive paste, and characteristics such as thermal conductivity, tensile strength, and elongation were analyzed. Among the binder resins, the conductive paste applied with a flexible epoxy material had the best physical properties, and a simulation study was conducted based on the physical property data base of the conductive face. As a result of the simulation, the best physical properties were exhibited when the Ag flake volume fraction was 60%.

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.

EFFECT OF RESIN MATRIX ON DEGREE OF CONVERSION AND FRACTURE TOUGHNESS OF DENIAL COMPOSITES (기질레진의 조성에 따른 복합레진의 물리적 성질에 관한 연구)

  • Lee, Yun-Shin;Choi, Kyoung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.1
    • /
    • pp.77-86
    • /
    • 2002
  • Current composites are made with dimethacrylate monomers and silane-treated silica microfillers, either alone or with silane treated glass fillers The main reasons for clinical failure of dental composites are secondary caries, wear and fracture. Most of practitioner want to get a composite which is more tougher under occlusal stress, less polymerization contraction, and better handling properties in application clinically. The aim of this study was to investigate the influence of resin matrix with various flows on the physical proper-ties such as fracture toughness and degree of conversion of the experimental resins. It was hypothesized that flexible or tough resin composites can be designed by judicious choice of monomer composition Various flow resin matrices containing Bis-GMA, UDMA, and TEG-DMA were made by altering the pro-portion of the monomers. After the unfilled resins were light-cured for different light intensity, the fracture toughness(K$_{1c}$) was measured according to ASTM standard using the single edge notched geometry, and degree of conversion(DC) was measured by FTIR. And experimental composites were formulated with variations in the proportion of silanated quartz and strontium glass fillers as 60, 75, and 77wt%. Also, the physical properties of composites with various filer contents were evaluated as same manner. All resulting data were compared by ANOVA/Tukeys test at 0.05 level. The results were as follows; 1. The degree of conversion of high flow resin containing less Bis-GMA was higher than that of low flow unfilled resin 2. While the degree of conversion of unfilled resin was increased according to light intensity for polymerization, there was no significant increase with moderate and high light intensity. Also, the fracture toughness was not increased by high light intensity. 3. The fracture toughness was high in the low flow unfilled resin containing higher contents of Bis-GMA. 4. There was a significant increase for fracture toughness and a tendency for degree of conversion to be reduced when the content of fillers was increased. 5. In the experimental composites, the flow of resin matrix did not affected on the fracture toughness, even, which was decreased as increase of viscosity. These results showed that the physical properties of a dental composite could be attributed to the flow of resin matrix with relative content of monomers. Specific combination of resin monomers should be designed to fulfil the needs of specific indication for use.

Development and Applications of New Thermochromism Inks used Chiral Nematic Liquid Crystal-UV Curing Resin (키랄네마틱 液晶-UV경화형 수지를 이용한 새로운 온도변색성 잉크의 개발 및 응용)

  • 김준곤;남수용;구철회;윤종태;심성보
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.113-124
    • /
    • 2000
  • It is well known that the characteristics of liquid crystal polymer composite(LCPC) films are possessed of large-area and flexible display, polarizer free, high contrast, wide angle of visual filed and high responsiveness. In this study, we have investigated to the best optimal mixing rates chiral nematic liquid crystals and UV-curable resins having different properties acrylate moleculars. The purpose of this study has been the development of new functional application with liquid crystal polymer composite films. For example the films were applied a new thermal sensor. In results, best phase separation behaviors turned out liquid crystal/monomer/oilgomer mixture system.

  • PDF