• 제목/요약/키워드: flexible and high-rise buildings

검색결과 28건 처리시간 0.016초

Wind engineering for high-rise buildings: A review

  • Zhu, Haitao;Yang, Bin;Zhang, Qilin;Pan, Licheng;Sun, Siyuan
    • Wind and Structures
    • /
    • 제32권3호
    • /
    • pp.249-265
    • /
    • 2021
  • As high-rise buildings become more and more slender and flexible, the wind effect has become a major concern to modern buildings. At present, wind engineering for high-rise buildings mainly focuses on the following four issues: wind excitation and response, aerodynamic damping, aerodynamic modifications and proximity effect. Taking these four issues of concern in high-rise buildings as the mainline, this paper summarizes the development history and current research progress of wind engineering for high-rise buildings. Some critical previous work and remarks are listed at the end of each chapter. From the future perspective, the CFD is still the most promising technique for structural wind engineering. The wind load inversion and the introduction of machine learning are two research directions worth exploring.

프랭크 로이드 라이트와 미즈 반 데르 로우의 고층건물 디자인 비교연구 (A Comparative Study on the High-rise Building Designs by Frank Lloyd Wright and Mies van der Rohe)

  • 권종욱
    • 건축역사연구
    • /
    • 제14권3호
    • /
    • pp.89-102
    • /
    • 2005
  • Frank Lloyd Wright and Mies van der Rohe are two of the most influential architects in modern architecture. In spite of the different values in their architectural lives, the design of high-rise building had been a continuous matter of primary concern for them. The purpose of this study is to compare the architectural characteristics of the two master architects in terms of building form, structure, function, and envelop skin. glass. Both of them shared with the principle of organic architecture even in the design of high-rise buildings. However, the specific approaches to realize it in high-rise buildings are significantly different. Although they emphasized the integration of building form and structure, Wright regarded the reinforced concrete structure as an organic form-giver, while Mies introduced the steel skeleton structure only as an efficient and flexible building frame. As primary finishing materials for high-rise buildings, glass was used for functional purpose by Wright, but for visual purpose by Mies.

  • PDF

Wind induced internal pressure overshoot in buildings with opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • 제16권1호
    • /
    • pp.1-23
    • /
    • 2013
  • The wind-induced transient response of internal pressure following the creation of a sudden dominant opening during the occurrence of high external pressure, in low-rise residential and industrial buildings was numerically investigated. The values of the ill-defined parameters namely the flow contraction coefficient, loss coefficient and the effective slug length were calibrated by matching the analytical response with the computational fluid dynamics predictions. The effect of a sudden i.e., "instantaneously created" windward opening in the Texas Technical University (TTU) test building envelope was studied for two different envelope flexibility-leakage combinations namely: (1) a quasi-statically flexible and non-porous envelope and (2) a quasi-statically flexible and porous envelope. The responses forced by creating the openings at different time leads/lags with respect to the occurrence of the peak external pressure showed that for cases where the openings are created in close temporal proximity to the peak pressure, the transient overshoot values of internal pressure could be higher than the peak values of internal pressure in the pre-sequent or subsequent resonant response. In addition, the influence of time taken for opening creation on the level of overshoot was also investigated for the TTU building for the two different envelope characteristics. Non-dimensional overshoot factors are presented for a variety of cavity volume-opening area combinations for (1) buildings with rigid/quasi-statically flexible non-porous envelope, and (2) buildings with rigid/quasi-statically flexible and porous envelope (representing most low rise residential and industrial buildings). While the factors appear slightly on the high side due to conservative assumptions made in the analysis, a careful consideration regarding the implication of the timing and magnitude of such overshoots during strong gusts, in relation to the steady state internal pressure response in cyclonic regions, is warranted.

Semi-active damped outriggers for seismic protection of high-rise buildings

  • Chang, Chia-Ming;Wang, Zhihao;Spencer, Billie F. Jr.;Chen, Zhengqing
    • Smart Structures and Systems
    • /
    • 제11권5호
    • /
    • pp.435-451
    • /
    • 2013
  • High-rise buildings are a common feature of urban cities around the world. These flexible structures frequently exhibit large vibration due to strong winds and earthquakes. Structural control has been employed as an effective means to mitigate excessive responses; however, structural control mechanisms that can be used in tall buildings are limited primarily to mass and liquid dampers. An attractive alternative can be found in outrigger damping systems, where the bending deformation of the building is transformed into shear deformation across dampers placed between the outrigger and the perimeter columns. The outrigger system provides additional damping that can reduce structural responses, such as the floor displacements and accelerations. This paper investigates the potential of using smart dampers, specifically magnetorheological (MR) fluid dampers, in the outrigger system. First, a high-rise building is modeled to portray the St. Francis Shangri-La Place in Philippines. The optimal performance of the outrigger damping system for mitigation of seismic responses in terms of damper size and location also is subsequently evaluated. The efficacy of the semi-active damped outrigger system is finally verified through numerical simulation.

Application of tuned liquid dampers in controlling the torsional vibration of high rise buildings

  • Ross, Andrew S.;El Damatty, Ashraf A.;El Ansary, Ayman M.
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.537-564
    • /
    • 2015
  • Excessive motions in buildings cause occupants to become uncomfortable and nervous. This is particularly detrimental to the tenants and ultimately the owner of the building, with respect to financial considerations. Serviceability issues, such as excessive accelerations and inter-story drifts, are more prevalent today due to advancements in the structural systems, strength of materials, and design practices. These factors allow buildings to be taller, lighter, and more flexible, thereby exacerbating the impact of dynamic responses. There is a growing need for innovative and effective techniques to reduce the serviceability responses of these tall buildings. The current study considers a case study of a real building to show the effectiveness and robustness of the TLD in reducing the coupled lateral-torsional motion of this high-rise building under wind loading. Three unique multi-modal TLD systems are designed specifically to mitigate the torsional response of the building. A procedure is developed to analyze a structure-TLD system using High Frequency Force Balance (HFFB) test data from the Boundary Layer Wind Tunnel Laboratory (BLWTL) at the University of Western Ontario. The effectiveness of the unique TLD systems is investigated. In addition, a parametric study is conducted to determine the robustness of the systems in reducing the serviceability responses. Three practical parameters are varied to investigate the robustness of the TLD system: the height of water inside the tanks, the amplitude modification factor, and the structural modal frequencies.

Analytical and experimental research on wind-induced vibration in high-rise buildings with tuned liquid column dampers

  • Liu, Ming-Yi;Chiang, Wei-Ling;Chu, Chia-Ren;Lin, Shih-Sheng
    • Wind and Structures
    • /
    • 제6권1호
    • /
    • pp.71-90
    • /
    • 2003
  • In recent years, high-strength, light-weight materials have been widely used in the construction of high-rise buildings. Such structures generally have flexible, low-damping characteristics. Consequently, wind-induced oscillation greatly affects the structural safety and the comfort of the building's occupants. In this research, wind tunnel experiments were carried out to study the wind-induced vibration of a building with a tuned liquid column damper (TLCD). Then, a model for predicting the aerodynamic response in the across-wind direction was generated. Finally, a computing procedure was developed for the analytical modeling of the structural oscillation in a building with a TLCD under the wind load. The model agrees substantially with the experimental results. Therefore, it may be used to accurately calculate the structural response. Results from this investigation show that the TLCD is more advantageous for reducing the across-wind vibration than the along-wind oscillation. When the across-wind aerodynamic effects are considered, the TLCD more effectively controls the aerodynamic response. Moreover, it is also more useful in suppressing the acceleration than the displacement in biaxial directions. As s result, TLCDs are effective devices for reducing the wind-induced vibration in buildings. Parametric studies have also been conducted to evaluate the effectiveness of the TLCD in suppressing the structural oscillation. This study may help engineers to more correctly predict the aerodynamic response of high-rise buildings as well as select the most appropriate TLCDs for reducing the structural vibration under the wind load. It may also improve the understanding of wind-structure interactions and wind resistant designs for high-rise buildings.

Model reduction techniques for high-rise buildings and its reduced-order controller with an improved BT method

  • Chen, Chao-Jun;Teng, Jun;Li, Zuo-Hua;Wu, Qing-Gui;Lin, Bei-Chun
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.305-317
    • /
    • 2021
  • An AMD control system is usually built based on the original model of a target building. As a result, the fact leads a large calculation workload exists. Therefore, the orders of a structural model should be reduced appropriately. Among various model-reduction methods, a suitable reduced-order model is important to high-rise buildings. Meanwhile, a partial structural information is discarded directly in the model-reduction process, which leads to the accuracy reduction of its controller design. In this paper, an optimal technique is selected through comparing several common model-reduction methods. Then, considering the dynamic characteristics of a high-rise building, an improved balanced truncation (BT) method is proposed for establishing its reduced-order model. The abandoned structural information, including natural frequencies, damping ratios and modal information of the original model, is reconsidered. Based on the improved reduced-order model, a new reduced-order controller is designed by a regional pole-placement method. A high-rise building with an AMD system is regarded as an example, in which the energy distribution, the control effects and the control parameters are used as the indexes to analyze the performance of the improved reduced-order controller. To verify its effectiveness, the proposed methodology is also applied to a four-storey experimental frame. The results demonstrate that the new controller has a stable control performance and a relatively short calculation time, which provides good potential for structural vibration control of high-rise buildings.

Serviceability evaluation methods for high-rise structures considering wind direction

  • Ryu, Hye-Jin;Shin, Dong-Hyeon;Ha, Young-Cheol
    • Wind and Structures
    • /
    • 제30권3호
    • /
    • pp.275-288
    • /
    • 2020
  • High-rise buildings are very slender and flexible. Their low stiffness values make them vulnerable to horizontal loads, such as those associated with wind or earthquakes. For high-rise buildings, the threat to serviceability caused by wind-induced vibration is an important problem. To estimate the serviceability under wind action, the response acceleration of a building at the roof height is used. The response acceleration is estimated by the same wind speed at all wind directions. In general, the effect of wind direction is not considered. Therefore, the response accelerations obtained are conservative. If buildings have typical plans and strong winds blow from relatively constant wind directions, it is necessary to account for the wind direction to estimate the response accelerations. This paper presents three methods of evaluating the response accelerations while considering the effects of wind direction. These three serviceability evaluation methods were estimated by combining the wind directional frequency data obtained from a weather station with the results of a response analysis using wind tunnel tests. Finally, the decrease in the efficiencies of the response acceleration for each serviceability evaluation method was investigated by comparing the response acceleration for the three methods accounting for wind direction with the response acceleration in which wind direction was not considered.

2017.11.15. 포항 흥해지진의 저층 RC 비틀림 비정형 건축물의 피해 및 손상 특성 (Seismic Damage to RC Low-rise Building Structures Having Irregularities at the Ground Story During the 15 November 2017 Pohang, Korea, Earthquake)

  • 황경란;이한선
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.103-111
    • /
    • 2018
  • This study examines the seismic failure of RC low-rise building structures having irregularities at the ground story during the 15 November 2017 Pohang, Korea, earthquake, $M_w=5.4$, which is the second strongest since the government began monitoring them in 1978 in South Korea. Some 2,000 private houses were damaged or destroyed in this earthquake. Particularly, serious damage to the piloti story of RC low-rise residential building structures of fewer than five stories was observed within 3 km of the epicenter with brittle shear failure of columns and walls due to severe torsional behavior. Buildings below six stories constructed before 2005 did not have to comply with seismic design requirements, so confinement detailing of columns and walls also led to inadequate performance. However, some buildings constructed after 2005 were damaged at the flexible side of the piloti story due to the high torsional irregularity. Based on these results, this study focuses on the problems of the seismic torsion design approach in current building codes.

초고층 주상복합 건축물 마감공사의 공종별 생산성 비교에 관한 연구 (A Study on the Productivity Analysis of Finishing Works on Super High-rise Mixed_use Building)

  • 홍보배;김용만;김주형;김재준
    • KIEAE Journal
    • /
    • 제10권5호
    • /
    • pp.165-170
    • /
    • 2010
  • Super high-rise mixed use buildings require a longer period for construction. Especially finishing work takes up about 40% of the whole construction period. Thus, finishing work is becoming an important factor in determining the construction period along with earth work and frame work. As the expected returns added by the reduction of the period and cost in constructing super high-rise mixed use buildings are huge, the expectations are now increasing for the possible gains. In this respect, as the period of finishing work is easier to be shortened than that of frame work, the efforts to acquire the technical knowledge to reduce the finishing work period are now being required. Accordingly, in this study, we aimed at suggesting the basic data for designing an economic plan for finishing-work procedure by analyzing the productivity of each work type of finishing work procedure on the basis of the execution and results of a construction method as a time-flexible finishing work plan. For this, we categorized the work types of finishing work procedure into each work unit and provided a work-system for each of them. Also, with case studies, we calculated the detailed amounts of the work-loads, required materials, productivity, and productivity index of the main work types of finishing work procedure and each of their separate work units as well as analyzed the relationship between the value results to suggest a better way to improve its productivity.