Proceedings of the Korean Operations and Management Science Society Conference
/
2000.04a
/
pp.617-620
/
2000
In this paper, we show an application of constraint logic programming to the operation scheduling on machines in a job shop. Constraint logic programming is a new genre of programming technique combining the declarative aspect of logic programming with the efficiency of constraint manipulation and solving mechanisms. Due to the latter feature, combinatorial search problems like scheduling may be resolved efficiently. In this study, the jobs that consist of a set of related operations are supposed to be constrained by precedence and resource availability. We also explore how the constraint solving mechanisms can be defined over a scheduling domain. Thus the scheduling approach presented here has two benefits: the flexibility that can be expected from an artificial intelligence tool by simplifying greatly the problem; and the efficiency that stems from the capability of constraint logic programming to manipulate constraints to prune the search space in an a priori manner.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.3
/
pp.479-482
/
2022
Recently, various artificial intelligence technologies are being applied to smart factory, finance, healthcare, and so on. When handling data requiring protection of privacy, distributed learning techniques are used. For distribution of information with privacy protection, encoding private information is required. Minimal codes has been used in such a secret-sharing scheme. In this paper, we explain the relationship between the characteristics of the minimal codes for application in distributed systems. We briefly deals with previously known construction methods, and presents extension methods for minimal codes. The new codes provide flexibility in distribution of private information. Furthermore, we discuss application scenarios for the extended codes.
This study is an empirical study to examine the factors that influence the intention to use artificial intelligence (AI) technology for SW engineering-related tasks, and the purpose of the study is to understand the key factors that influence the use in terms of AI augmentation characteristics and interactive UI/UX characteristics. For this purpose, a survey was conducted among information and communication workers who have experience in using AI-related technologies and the collected data was analyzed. The results of the empirical analysis showed that perceived usefulness was positively influenced by the factors of expertise, interestingness, realism, aesthetics, efficiency, and flexibility, and perceived ease of use was positively influenced by the factors of expertise, interestingness, realism, aesthetics, and flexibility. Variety had no effect on both perceived ease of use and perceived usefulness. Perceived ease of use had a significant effect on perceived immersion, which positively influenced intention to use. These findings are significant in that they provide an academic understanding of the factors that influence the use of AI-enhanced tools in SW engineering-related tasks such as application design, development, testing, and process automation, as well as practical directions for the creators of tools that provide AI-enhanced development services to develop user acquisition strategies.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.3
/
pp.366-370
/
2003
In this research, we suggest a hybrid intelligent Web recommendation systems based on Web data mining and case-based reasoning (CBR). One of the important research topics in the field of Internet business is blending artificial intelligence (AI) techniques with knowledge discovering in database (KDD) or data mining (DM). Data mining is used as an efficient mechanism in reasoning for association knowledge between goods and customers' preference. In the field of data mining, the features, called attributes, are often selected primary for mining the association knowledge between related products. Therefore, most of researches, in the arena of Web data mining, used association rules extraction mechanism. However, association rules extraction mechanism has a potential limitation in flexibility of reasoning. If there are some goods, which were not retrieved by association rules-based reasoning, we can't present more information to customer. To overcome this limitation case, we combined CBR with Web data mining. CBR is one of the AI techniques and used in problems for which it is difficult to solve with logical (association) rules. A Web-log data gathered in real-world Web shopping mall was given to illustrate the quality of the proposed hybrid recommendation mechanism. This Web shopping mall deals with remote-controlled plastic models such as remote-controlled car, yacht, airplane, and helicopter. The experimental results showed that our hybrid recommendation mechanism could reflect both association knowledge and implicit human knowledge extracted from cases in Web databases.
International Journal of Computer Science & Network Security
/
v.24
no.5
/
pp.64-72
/
2024
In recent times cyber attackers can use Artificial Intelligence (AI) to boost the sophistication and scope of attacks. On the defense side, AI is used to enhance defense plans, to boost the robustness, flexibility, and efficiency of defense systems, which means adapting to environmental changes to reduce impacts. With increased developments in the field of information and communication technologies, various exploits occur as a danger sign to cyber security and these exploitations are changing rapidly. Cyber criminals use new, sophisticated tactics to boost their attack speed and size. Consequently, there is a need for more flexible, adaptable and strong cyber defense systems that can identify a wide range of threats in real-time. In recent years, the adoption of AI approaches has increased and maintained a vital role in the detection and prevention of cyber threats. In this paper, an Ensemble Deep Restricted Boltzmann Machine (EDRBM) is developed for the classification of cybersecurity threats in case of a large-scale network environment. The EDRBM acts as a classification model that enables the classification of malicious flowsets from the largescale network. The simulation is conducted to test the efficacy of the proposed EDRBM under various malware attacks. The simulation results show that the proposed method achieves higher classification rate in classifying the malware in the flowsets i.e., malicious flowsets than other methods.
Recently, the whole world is facing an unprecedented moment of opportunity, so-called The Fourth Industrial Revolution. As emphasized in the World Economic Forum held in January of 2016 at Davos, the Fourth Industrial Revolution is not merely a changes of technological devices. The fundamental of the revolution is new, innovative, and visionary business models which change the whole systems dramatically. One of the greatest challenges is to feed an expected population of 9 billion by 2050 in a impactful way. The system should be sustainable as well as beneficial in improving the lives of people in the food chain along with the ecological health of environment. The technological advances of the Fourth Industrial Revolution are expected to improve our food system. The smart farm technology such as precision planting and irrigation techniques will improve the yields of food materials. The smart food transportation and logistics systems will substantially improve the safety and human nutrition. The adaptation the Fourth Industrial Revolution technology will induce the smart supply chains, smart production, and smart products in food industry due to its flexibility and standardization. This will lead the manufactures to adapt to customers' changing product specifications and traceable services in a timely manner.
This study was conducted to identify the determing factors of the success and constraints based on the perception of public officials preparing for the Fourth Industrial Revolution(4IR) and the collaboration among ministries. The analytic method performed an average value analysis based on the survey of public officials' awareness, and the results of the study are as follows. First, officials from nine ministries who are responsible for the 4IR recognized that they were regarded that the 4IR as a new opportunity, but if it failed to respond properly, there might be a crisis. Second, it recognizes the era of 4IR as the number one priority in big data, second in artificial intelligence and machine learning, and third in cloud computing technology. Third, they recognized that 'flexibility of the institutions' and 'recruitment of experts' were needed to prepare for the 4IR effectively.
Proceedings of the Korea Inteligent Information System Society Conference
/
2002.11a
/
pp.491-501
/
2002
Case-based reasoning is emerging as a leading methodology for the application of artificial intelligence. CBR is a reasoning methodology that exploits similar experienced solutions, in the form of past cases, to solve new problems. Hybrid model achieves some convergence of the wide proliferation of credit evaluation modeling. As a result, Hybrid model showed that proposed methodology classify more accurately than any of techniques individually do. It is confirmed that proposed methodology predicts significantly better than individual techniques and the other combining methodologies. The objective of the proposed approach is to determines a set of weighting values that can best formalize the match between the input case and the previously stored cases and integrates fuzzy sit concepts into the case indexing and retrieval process. The GA is used to search for the best set of weighting values that are able to promote the association consistency among the cases. The fitness value in this study is defined as the number of old cases whose solutions match the input cases solution. In order to obtain the fitness value, many procedures have to be executed beforehand. Also this study tries to transform financial values into category ones using fuzzy logic approach fur performance of credit evaluation. Fuzzy set theory allows numerical features to be converted into fuzzy terms to simplify the matching process, and allows greater flexibility in the retrieval of candidate cases. Our proposed model is to apply an intelligent system for bankruptcy prediction.
In recent years, the flexible organic synaptic transistor (FOST) has garnered attention for its flexibility, biocompatibility, ease of processability, and reduced complexity, which arise from using organic semiconductors as channel layers. These transistors can emulate the plasticity of the human brain with a simpler structure and lower fabrication costs compared to conventional inorganic synaptic devices. This makes them suitable for applications in next-generation wearable devices and soft robotics technologies. In FOST, the organic substrate is sensitive to the device preparation temperature; high-temperature treatment processes can cause thermal deformation of the organic substrate. Therefore, low-temperature solution-based processing techniques are essential for fabricating high-performance devices. This review summarizes the current research status of low-temperature solution-based FOST devices and presents the problems and challenges that need to be addressed.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.14
no.2
/
pp.115-121
/
2021
This paper used big data and artificial intelligence technology to predict the rapidly increasing internet traffic. There have been various studies on traffic prediction in the past, but they have not been able to reflect the increasing factors that induce huge Internet traffic such as smartphones and streaming in recent years. In addition, event-like factors such as the release of large-capacity popular games or the provision of new contents by OTT (Over the Top) operators are more difficult to predict in advance. Due to these characteristics, it was impossible for an ISP (Internet Service Provider) to reflect real-time service quality management or traffic forecasts in the network business environment with the existing method. Therefore, in this study, in order to solve this problem, an Internet traffic collection system was constructed that searches, discriminates and collects traffic data in real time, separate from the existing NMS. Through this, the flexibility and elasticity to automatically register the data of the collection target are secured, and real-time network quality monitoring is possible. In addition, a large amount of traffic data collected from the system was analyzed by machine learning (AI) to predict future traffic of OTT operators. Through this, more scientific and systematic prediction was possible, and in addition, it was possible to optimize the interworking between ISP operators and to secure the quality of large-scale OTT services.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.