• Title/Summary/Keyword: flax fibre

Search Result 5, Processing Time 0.019 seconds

Experimental evaluation on comparative mechanical properties of Jute - Flax fibre Reinforced composite structures

  • Kumar, B. Ravi;Srimannarayana, C.H. Naga;Krishnan, K. Aniruth;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.515-520
    • /
    • 2020
  • In the modern era, the world is facing unprecedented challenges in form of environmental pollution and international agencies are forcing scientists and materialists to look for green materials and structures to counter this problem. Composites based on renewable sources like plant based fibres, vegetable fibres are finding increasing use in interior components of automobile vehicles, aircraft, and building construction. In the present study, jute and flax fibre based composites were developed and tested for assessing their suitability for possible applications in interior cabin and parts of automobile and aerospace vehicles. Matrix system involves epoxy as resin and fibre weight fractions used were 45% and 55% respectively. Composites samples were prepared as per American society for testing and materials (ASTM) standard and were tested for individual fiber tensile strength, composite tensile strength, and flexural strength to analyse its behavior under various loading conditions. The results revealed that the Jute fibre composites possess enhanced mechanical properties over Flax fibre composites.

Synthesis and mechanical properties of flax fabric reinforced geopolymer composites

  • Assaedi, Hasan S.;Alomayri, Thamer S.;Shaikh, Faiz U.A.;Low, It-Meng
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.151-161
    • /
    • 2014
  • Geopolymer composites reinforced with different layers of woven flax fabric are fabricated using lay- up technique. Mechanical properties, such as flexural strength, flexural modulus and fracture toughness of geopolymer composites reinforced with 2.4, 3 and 4.1 wt% flax fibres are studied. The fracture surfaces of the composites are also examined using scanning electron microscopy. The results show that all the mechanical properties of the composites are improved by increasing the flax fibre contents. It is also found that the mechanical properties of flax fabric reinforced geopolymer composites are superior to pure geopolymer matrix. Micro-structural analysis of fracture surface of the composites indicated evidence of various toughening mechanisms by flax fabrics in the composites.

A Study on the Dyeing Properties of Natural Indigo Complex Powder and Synthetic Indigo with Natural Fiber (쪽풀로부터 제조한 고형쪽과 합성인디고의 염색성에 관한 연구)

  • 정영진;이명환;최해욱;이언필
    • Textile Coloration and Finishing
    • /
    • v.12 no.3
    • /
    • pp.174-182
    • /
    • 2000
  • We prepared natural indigo/calcium hydroxide complex powder from tinctoria's leaf, according to the demand of developing new dyeing technique of natural fibre with natural indigo. FT- IR and UV/Visible spectra were operated to find the dyeing properties of synthetic indigo and natural indigo powder. Cotton, flax and silk fabrics were dyed with different pH, dye concentration and dyeing time. The colour yield of indigo dye was quite sensitive to dye bath pH and fabric. In synthetic indigo, the highest K/S value of dyed silk fabric was shown at near pH 9.0, and which of flax and cotton fabric were shown at pH 11.0. In other hand, in the case of natural indigo complex powder, the highest K/S value of dyed silk fabric was shown at near pH 8.0, and which of flax and cotton fabric were shown at pH 9.5∼pH 10. Mercerized cotton fabric dyed with natural indigo powder has a little antimicrobial activity.

  • PDF

EVALUATION OF NIRS FOR ASSESSING PHYSICAL AND CHEMICAL CHARACTERISTICS OF LINEN WEFT YARN

  • Sharma, Hss;Kernaghan, K.;Whiteside, L.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1091-1091
    • /
    • 2001
  • Previous reports have shown that Near Infrared Spectroscopy (NIRS) can be used to assess physical and chemical properties of flax fibre and fabric quality. Currently, spinners assess yarn quality mainly based on strength and regularity measurements. There two key characteristics are influenced by quality of raw fibres used, especially the degree of rotting and strength. The aim of this investigation was to evaluate the use of NIRS for assessing quality of weft grade yarn available on the commercial market. In order to develop the NIR calibrations, a range of samples representing poor, medium and good quality weft yarn samples was included in the calibration and validation sample sets. The samples were analysed for physical and chemical parameters including caustic weight loss, fibre fractions, lipid, ash and minerals. A detailed protocol for assessing yarn quality has been developed to maximize the accuracy of the reflectance spectra. The development of partial least squares regression models and validation of the calibration equations using blind samples will be presented and discussed.

  • PDF

A Study on Design of 500W Class High Efficiency Horizontal Axis Wind Turbine System(HAWTS) Blade Using Natural Fiber Composites (친환경 소재를 적용한 500W급 고효율 수평축 풍력터빈 블레이드 설계에 관한 연구)

  • Park, Gwanglim;Kong, Changduk;Lee, Haseung;Park, Hyunbum
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.104-111
    • /
    • 2015
  • In this work, a structural design on 500W class horizontal axis wind turbine blade using natural-fibre composite is performed. The structural design result of flax composite blade is compared with the result of glass composite blade. The structural design of the wind turbine blade is carried out using the simplified methods such as the netting rule and the rule of mixture. The structural safety of the designed blade structure is investigated through the various load cases, stress, deformation and buckling analyses using the commercial FEM. The structural test of the manufactured prototype blade was performed to confirm the structural analysis results including strains, natural frequencies and deformations. According to the comparison results, it was confirmed that the analysis results are well agreed with the experimental results.