• Title/Summary/Keyword: flavan compound

Search Result 15, Processing Time 0.018 seconds

Proliferative Effects of Flavan-3-ols and Propelargonidins from Rhizomes of Drynaria fortunei on MCF-7 and Osteoblastic Cells

  • Chang, Eun-Ju;Lee, Won-Jung;Cho, Sung-Hee;Choi, Sang-Won
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.620-630
    • /
    • 2003
  • The proliferative effects of thirty Oriental medicinal herbs on MCF-7 (estrogen-sensitive breast cancer cell line) and ROS 17/2.8 osteoblast-like cells were determined using the MTT assay. Methanol extracts from several herbs was found to show proliferative activity on the above two cell lines in the range of 5 to 100 $\mu$g/mL. Among these active herbs, the methanol extract from the rhizomes of Drynaria fortunei showed the most potent proliferative activity, and the cell proliferations were significantly increase by 136 and 158% in the MCF-7 and ROS 17/2.8 cells, respectively, when treated with 100 $\mu$ g/mL. Through a bioassay-guided separation, eight flavonoids, including four new flavan-3-ols and two propelargonidins, together with the known (-)-epiafzelechin and naringin, were isolated. Their chemical structures were characterized as (-)-epiafzelechin (1), (-)-epiafzelechin-3-O-$\beta$-D-allopyranoside (2), (-)-epiafzelechin-3-O-(6"-O-acetyl)-$\beta$-D-allopyranoside (3), 4$\beta$-carboxymethyl-(-)-epiafzelechin methyl ester (4), 4$\beta$-car-boxymethyl-(-)-epiafzelechin sodium salt (5), naringin (6), (-)-epiafzelechin-(4$\beta$\rightarrow8)-4$\beta$-car-boxymethylepiafzelechin methyl ester (7) and (-)-epiafzelechin-($4\beta\rightarrow8, 2\beta\rightarrowΟ\rightarrow7)-epiafzelechin-(4\beta\righarrow8)-epiafzelechin (8) by extensive 1D and 2D NMR spectroscopy. Most of these flavonoids, in the range of $10^{-15}∼10^{-6}$ M, accelerated the proliferation of MCF-7 cell, with compounds 7 and 8, in the range of $10^{-15}∼10^{-12}$ M, showing especially potent proliferation effects. Meanwhile, seven flavonoids, with the exception of compound 4, stimulated the proliferation of ROS 17/2.8 cells in the range of $10^{-15}∼10^{-6}$ M, with compounds 5-8 especially accelerating the proliferation, in dose-dependent manners ($10^{-15}∼10^{-9}$ M), and their proliferative effect was much stronger than that of $E_2$ and genistein. These results suggest that propelargonidin dimers and trimers isolated from the rhizomes of Drynaria fortunei may be useful as potential phytoestrogens, which play important physiological roles in the prevention of postmenopausal osteoporosis.

Isolation of Polyphenol Compounds from the Leaves of Korean Persimmon (Diospyrus kaki L. Folium) (한국산 감잎로부터 Polyphenol계 생리활성물질 분리)

  • An, Bong-Jeun;Bae, Man-Jong;Choi, Hee-Jin;Zhang, Yun-Bin;Sung, Tae-Soo;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.45 no.4
    • /
    • pp.212-217
    • /
    • 2002
  • We purified polyphenols from persimmon leaf and tested their biological activity. The 60% acetone extract was lyophilized and applied to test enzyme inhibition of glucosyltransferase and tyrosinase. GTase was 82.4% inhibited at $1.8{\times}10^{-1}$ mg/ml and tyrosinase 21.7% inhibited at 0.8 mg/ml. The acetone extract was fractionated into F-1, 2, 3, 4, 5 by Sephadex Q-50 gel filtration and the fraction-1 and 2 showed higher enzyme inhibition activity than the other fractions. To the Proteinase K treatment and autoclaving of the two fractions had no effect on the enzyme activity, but these results suggested that active fraction was not protein but phenol ring completed compounds. By Sephadex LH-20, MCI-gel and Bondapak $C_{18}$ column chromatographies, compouds 1, 2, 3 and 4 from F-1 fraction, compounds 5 and 6 from F-2 fraction and compounds 7 , 8 from F-3 fraction were purified and re-crystallized. The purified compounds was assumed to be condensed tannins of frame flavan-3-ol frame on the basis of color reagent reaction and to be a mixture of monomer, dimer and trimer according to TLC analysis.

Inhibition of Phospholipase $C{\Upsilon}1$ and Cancer Cell Proliferation by Lignans and Flavans from Machilus thunbergii

  • Lee, Ji-Suk;Kim, Jin-Woong;Yu, Young-Uck;Kim , Young-Choong
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1043-1047
    • /
    • 2004
  • Thirteen compounds were isolated from the $CH_2Cl_2$ fraction of Machilus thunbergii as phospholipase $C{\Upsilon}1\;(PLC{\Upsilon}1)$ inhibitors. These compounds were identified as nine lignans, two neolignans, and two flavans by spectroscopic analysis. Of these, 5,7-di-O-methyl-3',4'-methylenated (-)-epicatechin (12) and 5,7,3'-tri-O-methyl (-)-epicatechin (13) have not been reported previously in this plant. In addition, seven compounds, machilin A (1), (-)-sesamin (3), machilin G (5), (+)-galbacin (9), licarin A (10), (-)-acuminatin (11) and compound 12 showed dose-dependent potent inhibitory activities against $PLC{\Upsilon}1$ in vitro with $IC_{50}$ values ranging from 8.8 to 26.0 ${\mu}M$. These lignans, neolignans, and flavans are presented as a new class of $PLC{\Upsilon}1$ inhibitors. The brief study of the structure activity relationship of these compounds suggested that the benzene ring with the methylene dioxy group is responsible for the expression of inhibitory activities against $PLC{\Upsilon}1$. Moreover, it is suggested that inhibition of $PLC{\Upsilon}1$ may be an important mechanism for an antiproliferative effect on the human cancer cells. Therefore, these inhibitors may be utilized as cancer chemotherapeutic and chemopreventive agents.

Identification of Biologically Effect and Chemical Structure of Polyphenol Compounds from the Leaves of Korea Persimmon (Diospyrus kaki L. Folium) (한국산 감잎의 Polyphenol 화합물의 생리활성물질의 화학구조 및 효소저해효과)

  • An, Bong-Jeon;Choi, Hee-Jin;Son, Jun-Ho;Woo, Hee-Seob;Han, Ho-Suk;Park, Jung-Hye;Son, Gyu-Mok;Choi, Cheong
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.5
    • /
    • pp.443-456
    • /
    • 2003
  • The lyophilization of the solution extracted from 60 percent of acetone applied to persimmon leaves, the compounding process in accordance with the solution's concentration, and the gel filteration through Sephadex G-50 of biologically activated substances obstructing enzyme activity, such as tyrosinase, xanthine oxidase, and angiotesin converting enzyme (ACE) led to the assumption that polyphenol was the compound serving as biologically activated substances obstructing enzyme activity. Xanthine oxidase involved in pruine metabolism oxidizes hypoxanthine to xanthine and xanthine to uric acid. In the continuous study for natural compound, nine flavan-3-ols have been isolated from the persimmon leaves. The structures of (+)-catechin, (+)-gallocatechin, procyanidin B-1, pyrocyanidin C-1, prodelphinidin B-3, gallocatechin-$(4{\alpha}{\rightarrow}8)$-catechin, procyanidin B-7-3-O-gallate, procyanidin C-1-3'-3'-3'-O-trigallate and (-)-epigallocatechin-$(4{\alpha}{\rightarrow}8)$-epigallocatechin-$(4{\alpha}{\rightarrow}8)$-catechin were established by NMR and their inhibitory effect on xanthine oxidase activity was investigated. Procyanidin B-7-3-O-gallate, (-)-epigallocatechin-$(4{\alpha}{\rightarrow}8)$-epigallocatechin-$(4{\alpha}{\rightarrow}8)$-catechin and procyanidin C-1-3'-3'-3'-O-trigallate showed 94%, 90.69%, 80.90% inhibition at $100\;({\mu})M$ and inhibited on the angiotensin converting enzyme respectively. Procyanidin B-7-3-O-gallate and procyanidin C-1-3'-3'-3'-O-trigallate showed 66%, 63% inhibition at $100\;({\mu})M$ and inhibited on the xanthine oxidase competitively. Procyanidin C-1-3'-3'-3'-O-trigallate showed 70% inhibition at $100\;({\mu})M$ and inhibited on the tyrosinase competitively.

Structure Determination of the Extractives from the Taxus Cuspidata Fruits (주목열매 추출물 구조분석)

  • Park, Se-Yeong;Choi, In-Gyu;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.566-575
    • /
    • 2013
  • The fruits of Taxus cuspidata were collected, divided into seeds and fruits, and extracted with 95% EtOH. The extracts were evaporated under the reduced vacuum pressure, concentrated, then successively fractionated with a series of n-hexane, dichloromethane, ethyl acetate and water on a separatory funnel to get some freeze dried samples. A portion of the EtOAc (arils:1.65 g, seeds:1.04 g) and $H_2O$ (arils:7 g, seeds:10 g) soluble samples were chromatographed on a Sephadex column using MeOH-$H_2O$ (1:1, 1:3, 1:5, v/v), EtOH-hexane (3:1, v/v) mixture and 100% $H_2O$ as eluting solvents to isolate pure compounds from the fractions. The isolates were developed by cellulose TLC using t-BuOH-HOAc-$H_2O$ (TBA; 3:1:1, v/v/v) and 6% aqueous HOAc. Visualization was done under ultraviolet light and by spraying the vanillin-HCl-EtOH reagent (4.8:12:480, v/v/v). followed by heating. The structures of the isolates were characterized by $^1H$- and $^{13}C$-NMR, DEPT, 2D-NMR, LC/MS and EI-MS spectra. In addition to the NMR and MS spectra, acid hydrolysis and permethylation were used to determine the correct structure of the isolated sugar compound. Their structures were elucidated as (+)-catechin (1), (-)-epicatechin (2), (+)-gallocatechin (3), (-)-epigallocatechin (4) and ${\beta}$-D-fructofuranose-($2{\rightarrow}4$)-O-${\beta}$-D-glucopyranose($1{\rightarrow}4$)-O-${\alpha}$-D-glucopyranose ($1{\rightarrow}2$)-O-${\beta}$-D-fructofuranose (5) on the basis of the above experimental evidences.