• Title/Summary/Keyword: flat slab-column connections

Search Result 52, Processing Time 0.021 seconds

Effective Beam Width Coefficients for Lateral Stiffness in Flat-Plate Structures

  • Park, Jung-Wook;Kim, Chul-Soo;Song, Jin-Gyu;Lee, Soo-Gon
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.49-57
    • /
    • 2001
  • Flat-plate buildings are commonly modeled as two-dimensional frames to calculate unbalanced moments, lateral drift and shear at slab-column connections. The slab-column frames under lateral loads are analyzed using effective beam width models, which is convenient for computer analysis. In this case, the accuracy of this approach depends on the exact values of effective beam width to account for the actual behavior of slab-column connections. In this parametric study, effective beam width coefficients for wide range of the variations are calculated on the several types of slab-column connections, and the results are compared with those of other researches. Also the formulas for effective beam width coefficients are proposed and verified by finite element analysis. The proposed formulas are founded to be more suitable than others for analyzing flat-plate buildings subjected to lateral loading.

  • PDF

Development and evaluation of punching shear database for flat slab-column connections without shear reinforcement

  • Derogar, Shahram;Ince, Ceren;Mandal, Parthasarathi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.203-215
    • /
    • 2018
  • A large body of experiments have been conducted to date to evaluate the punching shear strength of flat slab-column connections, but it is noted that only a few of them have been considered for the development of the ACI Code provisions. The limited test results used for the development of the code provisions fall short of predicting accurately the punching shear strength of such connections. In an effort to address this shortfall and to gain an insight into the factors that control the punching shear strength of flat slab-column connections, we report a qualified database of 650 punching shear test results in this article. All slabs examined in this database were tested under gravity loading and do not contain shear reinforcement. In order to justify including any test result for evaluation punching shear database, we have developed an approved set of criteria. Carefully established set of criteria represent the actual characteristics of structures that include minimum compressive strength, effective depths of slab, flexural and compression reinforcement ratio and column size. The key parameters that significantly affect the punching shear strength of flat slab-column connections are then examined using ACI 318-14 expression. The results reported here have paramount significance on the range of applicability of the ACI Code provision and seem to indicate that the ACI provisions do not sufficiently capture many trends identified through regression of the principal parameters, and fall on the unsafe side for the prediction of the punching shear strength of flat slab-column connections.

Equivalent Beam Model for Flat-Plate Building (무량판 건물의 등가 보 모델)

  • 박수경;김두영;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.312-316
    • /
    • 1995
  • Flat-plate buildings are commonly modeled as two-dimensional frames to calculate lateral drift, unbalanced moments, and shear at slab-column connections. For gravity loads. the slab-column frames are analyzed using equivalent column approach, while equivalent beam approach is typical for lateral loads. The equivalent beam approach is convenient for computer analysis, but no rational procedure exists for determining the effective width of foor slabs. At present, the determination of the equivalent slab width and its stiffness is a matter of engineering judgement. To account for cracking, overly conservative assumptions are made regarding the stiffness of the slab. A rational approach is therefore needed to realistically estimate the equivalent slab width and its stiffness for unbalanced moment and lateral drift calculations. Based on the test results of 8 interior slab-column connections, an equivalent beam model is proposed in which columns are modeled conventionally as a function of column and slab aspect ratios and the magnitude of the gravity load. the proposed approach is verified with selected experimental results and is founded to be practical and convenient for analyzing flat-plate buildings subjected to gravity and lateral loading.

  • PDF

Structural Behavior in Slab-Column Connections with Shear Plate Using Structural Experiment and Non-destructive Test, Spectral Analysis of Surface Waves (구조 실험과 SASW를 이용한 플랫 플레이트 기둥-슬래브접합부에서의 구조적 거동에 관한 연구)

  • Joo, Hyun-Jee;Cho, Young-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.48-51
    • /
    • 2004
  • This paper is to study the response of flat plate slab-column connections consisting of various types of shear reinforcement and steel plate subjected to gravity loadings, mainly punching shear forces using the non-destructive testing, spectral analysis of surface waves and structural experiments. The base specimen failed due to punching shear generated from the gravity. The three other types of slab shear reinforcement and steel plate showed effective in resisting punching shear for these types of connections under gravity loading. This study has focused in evaluating the velocity response of a Surface wave during the early age as the poured concrete specimens have been hardened, the possibility of damage detection in the slab-column connection and the relationship between the punching shear forces and the surface wave velocities under the condition that the punching shear forces had gradually increased until the flat plate slab in slab-column connection had been failed.

  • PDF

Analytical Model for Post Tension Flat Plate Frames (포스트 텐션 플랫 플레이트 골조의 해석모델)

  • Han, Sang-Whan;Ryu, Jong-Hyuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.23-32
    • /
    • 2007
  • This study developed an analytical model for predicting nonlinear behavior of PT flat plate frames having slab-column connections with and without slab bottom reinforcement passing through the column. The developed model can predict the failure sequence until punching failure occurs. For verifying the analytical model, the test results of PT flat plate slab-column connections were compared with the results of the analysis. Moreover, the results of static pushover test and shaking table test of 2 story PT flat plate frame were compared with analysis results. For evaluating seismic performance of PT flat plate frame, this study conducted nonlinear response history analysis of the 2 story PT flat plate frame with and without slab bottom reinforcement passing through the column under 1940 El Centro ground motion scaled to have pseudo spectral acceleration of 0.3, 0.5, and 0.7g at the fundamental period of the frame. This study observed that as ground motion is more intense, seismic demands for the frame having the connections without slab bottom reinforcement passing through the column are larger than those without slab bottom reinforcement.

Structural Behavior of Post-Tensioned Flat Plate Slab-Column Connections (포스트 텐션 플랫 플레이트 슬래브 접합부의 거동)

  • Cho Kyung Hyun;Han Sang Whan;Lee Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.53-56
    • /
    • 2004
  • Recently, post tension flat plate slab system is widely used for a new slab structural system. Slab-column connections may fail in brittle manner by punching shear. Flat plate slabs have been widely used for gravity load resisting system in buildings. Lateral resistance usually provided by shear walls or moment resisting frames. Since plat plates move together with lateral loading system during earthquake or wind, it is important to evaluate the gravity resistance under a drift experienced by lateral force resisting system during either design earthquake or wind. Thus, this study investigated post tension flat plate slab systems whether they have sufficient strength and deformability to resist gravity loads during specified drift levels. Experimental research was carried out.

  • PDF

Layered finite element method in cracking and failure analysis of RC beams and beam-column-slab connections

  • Guan, Hong;Loo, Yew-Chaye
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.645-662
    • /
    • 1997
  • A nonlinear semi-three-dimensional layered finite element procedure is developed for cracking and failure analysis of reinforced concrete beams and the spandrel beam-column-slab connections of flat plates. The layered element approach takes the elasto-plastic failure behaviour and geometric nonlinearity into consideration. A strain-hardening plasticity concrete model and a smeared steel model are incorporated into the layered element formulation. Further, shear failure, transverse reinforcement, spandrel beams and columns are successfully modelled. The proposed method incorporating the nonlinear constitutive models for concrete and steel is implemented in a finite element program. Test specimens including a series of reinforced concrete beams and beam-column-slab connections of flat plates are analysed. Results confirm the effectiveness and accuracy of the layered procedure in predicting both flexural and shear cracking up to failure.

A Study of Shear Reinforcement for Slab-Column Connection (슬래브-기둥 접합부의 전단보강상세에 관한 연구)

  • Baek, Sung-Woo;Kim, Jun-Seo;Choi, Hyun-Ki;Choi, Chang-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.37-40
    • /
    • 2008
  • The study is an experimental test on full-scale flat plate slab-column interior connection. The punching shear on the flat plate slab-column connection can bring about the reason of the brittle punching shear failure which may result of collapsing the whole structure. From the development of residential flat plate system, the shear reinforcement is developed for preventing the punching shear. For making sure of the punching shear capacity, developed for shear reinforcement in slab-column connection, the structural test is performed. The dimension of the slabs was 2620*2725*180mm with square column (600*800mm). The slabs were tested up to failure monotonic vertical shear forces. The presences of S/S bar and wire mesh substantially increased the punching shear capacity and the ductility of the slab-column connections.

  • PDF

Modelling of reinforced concrete flat slab-column connections for system-scale seismic analyses of high-rise buildings

  • T.Y. Yang;O. AlHarras;L. Tobber;O. Sargazi
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Reinforced concrete flat slab (RCFS) with columns is a standard gravity floor system for tall buildings in North America. Typically, RCFS-column connections are designed to resist gravity loads, and their contribution to resisting seismic forces is ignored. However, past experimental research has shown that RCFS-column connections have some strength and ductility, which may not be ignored. Advanced numerical models have been developed in the past to determine the nonlinear cyclic behavior of RCFS-column connections. However, these models are either too complicated for nonlinear dynamic analysis of an entire building or not developed to model the behavior of modern RCFS-column connections. This paper proposes a new nonlinear model suitable for modern RCFS-column connections. The numerical model is verified using experimental data of specimens with various material and reinforcement properties. A 40-story RC shear wall building was designed and analyzed to investigate the influence of RCFS on the global response of tall concrete buildings. The seismic responses of the building with and without the RCFS were modelled and compared. The results show that the modelling of RCFS has a significant impact on the inter-story drifts and force demands on both the seismic force-resisting and gravity elements.

Experimental Study on the Structural Behaviors of Reinforced Flat Plate Under Lateral Loads (수평하중하에서 철근 콘크리트 플랫 플레이트의 구조적 거동에 관한 실험적 연구)

  • 조영직;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.323-328
    • /
    • 1995
  • This paper is experimental study to define the structural behaviors of reinforced flat plate under combined gravity and lateral loads. Specific objectives of this study reported herein are : (1) To study the behavior of a typical slab-column subassemblage under lateral loading. (2) To study the effects of vertical loads on slab-column lateral load behavior. (3) To investigate the post-failure behavior of slab-column connetios. To achieve these objectives, this study includes four tests of slab-column subassemblages that were made for 1/2 scale. Finally, Test results of this study show that the level of gravity load on the flat plate is one of the most important factors determining the lateral behavior of flat plate connections.

  • PDF