• Title/Summary/Keyword: flat panel display

Search Result 447, Processing Time 0.028 seconds

A new WV Film for Fast-Response-time OCB-LCD-TVs

  • Ito, Yoji;Matsubara, Ryouta;Hisakado, Yoshiaki;Mori, Hiroyuki;Mihayashi, Keiji
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.991-994
    • /
    • 2005
  • We have successfully commercialized a novel optical compensation film, OCB-WV film, for OCB-LCD-TVs which has fast response time and wide viewing angle. The OCB-WV film consists of a 45degree-aligned discotic layer and a high Rth biaxial TAC film, which is suited for a roll-to-roll polarizer manufacturing process. This OCB-WV has brought out the excellent features that OCB intrinsically has, making nextgeneration fast-response LCD-TVs possible and free from image blurring in conjunction with an impulsive driving scheme.

  • PDF

Laser Microfabrications for Next-Generation Flat Panel Display (레이저를 이용한 차세대 평판 디스플레이 공정)

  • Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

MacMic System for Flat Panel Display

  • Lee, Ui-Taek;Bae, Gi-Seon;Park, Chang-Hyeon;Gwon, Sang-Jik
    • Information Display
    • /
    • v.4 no.2
    • /
    • pp.3-6
    • /
    • 2003
  • This paper describes a MacMic System developed for Flat Panel Display. The MacMic System usually is used for testing of Mother Glass of TFT and Color Filter. They are normally consisted of microscopy system, illumination system and panel stage system.

Three Dimensional Architecture of Multiplexing Data Registration Integrated Circuit for Flat Panel Display

  • Tseng, Fan-Gang;Liou, Jian-Chiun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1293-1296
    • /
    • 2008
  • As Flat Panel Display become large in format, the data and gate lines turn into longer, parasitic capacitance and resistance increase, and the display signal is delayed. Three dimensional architecture of multiplexing data registration integrated circuit method is used that divides the data line into several blocks and provides the advantages of high accuracy, rapid selection, and reasonable switching speed.

  • PDF

Flat Panel Display Deflection Analysis Considering Lift Force in Non-Contact Flat Panel Display Conveyer System (비접촉 평판 디스플레이 이송장치에서 양력을 고려한 평판 디스플레이의 처짐 해석)

  • Hwang, Sung-Hyen;Choi, Hyeon-Chang;Lho, Te-Jung;Son, Te-Yong;Park, Bum-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.451-457
    • /
    • 2008
  • Flat Panel Display(FPD) is widely used a video display terminals to consumer products of LCD and PDP. The contamination and damage were affected by using the previous contact conveyor's method. In this paper, it analyzes the FPD deflection to develop the non-contact FPD transfer process using lift force. Each conveyor's equipment is called a horizontal conveyor, vertical conveyor and robot pick-up equipment. As result of an analysis of FPD panel's deflection, a robot pick-up equipment has performed according to under the present conditions like panel's weight and loaded glass to move FPD panel from one place to other places properly. Results of the analysis showed 0.474 mm, 0.424 mm and 1.237 mm. Those values are lower than a predicted optimum values : 2 mm for both horizontal and vertical conveyers; 5 mm for robot pick-up equipment. Therefore, those results verify each equipment have safety and reliability.

Development of Test Method for Flat Panel Display Life Time Prediction during Atmospheric Particle Exposure (평판디스플레이의 대기중 분진농도에 따른 수명예측 시험방법 개발)

  • Yoo, Dong-Hyun;Lee, Gun-Ho;Choi, Jung-Uk;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.45-48
    • /
    • 2013
  • The electronic device, such as flat panel display (FPD), is very important in our life as a means of communication between humans. Liquid crystal display (LCD), which is categorized as a flat panel display, has been used in many display products, especially in TV industry. An LED TV is composed of several electrical components, such as liquid critical module (LCM), analog to digital convertor (AD), power supplier, and inverter board. These modules are very vulnerable to particulate contamination, and causing malfunction or visibility degradation. In this study, we developed a test method for prediction of LCM's lifetime. The test system consists of carbon particle generation flame, dilution system, test chamber, and particle concentration monitoring instrument. Since the carbon particles are the most abundant in the atmosphere and easily absorb light, soot particles are used as a challenging material for this test. The concentration of generated soot particles is set around 4,000,000 #/cc, which is 400 times higher than that of usual atmospheric particles. Through this experiment, we deduced the relationship between the dust concentration and life time of the test specimen.

PanelLink Digital Flat Panel Display Transmitter for TFT LCD Test (TFT LCD 검사용 패널링크 디지털 플랫 패널 디스플레이 송신부 구현)

  • Lee, Seon-Bok;Baek, Woon-Sung;Park, Chang-Soo;Hong, Cheol-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.621-623
    • /
    • 1998
  • We implemented PanelLlnk digital flat panel display transmitter supporting SXGA($1280{\times}1024$) resolution. It can transmit data through 10m cable at XGA($1024{\times}768$) resolution and through 7m cable at SXGA($1280{\times}1024$). We also found resistor value to get stable display image by low voltage differential signal swing control.

  • PDF

Sound Quality Enhancement by using the Single Core Exciter in OLED Panel

  • Lee, Sungtae;Park, Kwanho;Park, Hyungwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.871-888
    • /
    • 2020
  • With the development of display engineering and technology, the screen and sound quality of information devices such as TVs are improving. The screen used LEDs via LCD and PDP and a large flat panel in the early CRT to create super-high resolution. The sound is improved by directly vibrating a thin and simple panel, such as an OLED. In our previous study, the exciter speaker was attached to the rear of the OLED panel to be used as the diaphragm of the speaker, and the sound quality was as good as that of the TV using the existing dynamic speaker. This method supplied the viewer with the direct sound coming from the panel, delivering clear sound, and the sound and image came from the same location, thus giving the viewer high immersion and maximizing the effect of information transfer. OLED exciter speakers, however, have a special directivity, which tends to slightly attenuate the tone at the very center of the screen. This study improves the sound quality by improving the structure of the exciter speaker and the radiated sound of the flat panel display. A 2-in-1 Exciter is made into a single core to improve the speaker's radiation pattern.