• 제목/요약/키워드: flat large structures

검색결과 92건 처리시간 0.022초

Improvement and validation of a flow model for conical vortices

  • Ye, Jihong;Dong, Xin
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.113-144
    • /
    • 2014
  • Separation bubble and conical vortices on a large-span flat roof were observed in this study through the use of flow visualization. The results indicated that separation bubble occurred when the flow was normal to the leading edge of the flat roof. Conical vortices that occur under the cornering flow were observed near the leading edge, and their appearance was influenced by the wind angle. When the wind changed from along the diagonal to deviating from the diagonal of the roof, the conical vortex close to the approaching flow changed from circular to be more oblong shaped. Based on the measured velocities in the conical vortices by flow visualization, a proposed two-dimensional vortex model was improved and validated by simplifying the velocity profile between the vortex and the potential flow region. Through measured velocities and parameters of vortices, the intensities of conical vortices and separation bubble on a large-span flat roof under different wind directions were provided. The quasi-steady theory was corrected by including the effect of vortices. With this improved two-dimensional vortex model and the corrected quasi-steady theory, the mean and peak suction beneath the cores of the conical vortices and separation bubble can be predicted, and these were verified by measured pressures on a larger-scale model of the flat roof.

Structural Performance of Reinforced Concrete Flat Plate Buildings Subjected to Fire

  • George, Sara J.;Tian, Ying
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권2호
    • /
    • pp.111-121
    • /
    • 2012
  • The research presented in this paper analytically examines the fire performance of flat plate buildings. The modeling parameters for the mechanical and thermal properties of materials are calibrated from relevant test data to minimize the uncertainties involved in analysis. The calibrated models are then adopted to perform a nonlinear finite element simulation on a flat plate building subjected to fire. The analysis examines the characteristics of slab deflection, in-plane deformation, membrane force, bending moment redistribution, and slab rotational deformation near the supporting columns. The numerical simulation enables the understanding of structural performance of flat plate under elevated temperature and, more importantly, identifies the high risk of punching failure at slab-column connections that may trigger large-scale failure in flat plate structures.

미세 Riblet 평판에서의 난류구조 변화에 관한 실험적 연구 (Experimental Study on Turbulent Structure of Flow over a Micro Riblet Plate)

  • 최용석;이상준
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.375-376
    • /
    • 2006
  • Turbulent structure of a boundary-layer over a flat plate coated with micro riblet film(MRF) has been investigated experimentally. The turbulent structure was visualized using a dynamic particle image velocimetry (Dynamic PIV) system. We identified the vortex structures from 2-D velocity field data by applying the complex eigenvalue definition. The velocity field images acquired by using the complex eigenvalue definition showed the whole 2-D vortex structures clearly. In addition, the spatial distributions of small-scale vortices as well as large-scale vortices were obtained with high accuracy. The difference of vortex structures between the MRF coated flat plate and the smooth flat plate was analysed in detail. With varying upstream flow speed, the characteristics of vortex structure over the MRF coated flate plate was compared with those over the smooth flat plate.

  • PDF

3-D characteristics of conical vortex around large-span flat roof by PIV technique

  • Sun, Huyue;Ye, Jihong
    • Wind and Structures
    • /
    • 제22권6호
    • /
    • pp.663-684
    • /
    • 2016
  • Conical vortices generated at the corner regions of large-span flat roofs have been investigated by using the Particle Image Velocimetry (PIV) technique. Mean and instantaneous vector fields for velocity, vorticity, and streamlines were measured at three visual planes and for two different flow angles of $15^{\circ}$. The results indicated that conical vortices occur when the wind is not perpendicular to the front edge. The location of the leading edge corresponding to the negative peak vorticity and maximum turbulent kinetic energy was found at the center of the conical vortex. The wind pressure reaches the maximum near the leading edge roof corner, and a triangle of severe suctions zone appears downstream. The mean pressure in uniform flow is greater than that under turbulent flow condition, while a significant increase in the fluctuating wind pressure occurs in turbulent streams. From its emergence to stability, the shape of the vortex cross-section is nearly elliptical, with increasing area. The angle that forms between the vortex axis and the leading edge is much smaller in turbulent streams. The detailed flow structures and characteristics obtained through FLUENT simulation are in agreement with the experimental results. The three dimensional (3-D) structure of the conical vortices is clearly observed from the comprehensive arrangement of several visual planes, and the inner link was established between the vortex evolution process, vortex core position and pressure distribution.

Nonlinear modeling of flat-plate structures using grid beam elements

  • Tian, Ying;Chen, Jianwei;Said, Aly;Zhao, Jian
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.489-505
    • /
    • 2012
  • This paper presents a simplified grid beam model for simulating the nonlinear response of reinforced concrete flat-plate structures. The beam elements are defined with nonlinear behavior for bending moment and torsion. The flexural stiffness and torsional strength of the beam elements are defined based on experimental data to implicitly account for slab two-way bending effects. A failure criterion that considers the interaction between the punching strength and slab flexural behavior is incorporated in the model. The effects of bond-slip of slab reinforcement on connection stiffness are examined. The proposed grid beam model is validated by simulating large-scale tests of slab-column connections subjected to concentric gravity loading and unbalanced moment. This study also determines the critical parameters for a hysteretic model used to simulate flat-plates subjected to cyclic lateral loading.

Assessment of sensitivity-based FE model updating technique for damage detection in large space structures

  • Razavi, Mojtaba;Hadidi, Ali
    • Structural Monitoring and Maintenance
    • /
    • 제7권3호
    • /
    • pp.261-281
    • /
    • 2020
  • Civil structures may experience progressive deterioration and damage under environmental and operational conditions over their service life. Finite element (FE) model updating method is one of the most important approaches for damage identification in structures due to its capabilities in structural health monitoring. Although various damage detection approaches have been investigated on structures, there are limited studies on large-sized space structures. Thus, this paper aims to investigate the applicability and efficiency of sensitivity-based FE model updating framework for damage identification in large space structures from a distinct point of view. This framework facilitates modeling and model updating in large and geometric complicated space structures. Considering sensitivity-based FE model updating and vibration measurements, the discrepancy between acceleration response data in real damaged structure and hypothetical damaged structure have been minimized through adjusting the updating parameters. The feasibility and efficiency of the above-mentioned approach for damage identification has finally been demonstrated with two numerical examples: a flat double layer grid and a double layer diamatic dome. According to the results, this method can detect, localize, and quantify damages in large-scaled space structures very accurately which is robust to noisy data. Also, requiring a remarkably small number of iterations to converge, typically less than four, demonstrates the computational efficiency of this method.

변형종속 압력하중을 받는 셸구조물의 해석 (Analysis of Shell Structures Subjected to Deformation Dependent Pressure Load)

  • 장명호;권택진
    • 한국공간구조학회논문집
    • /
    • 제2권1호
    • /
    • pp.93-102
    • /
    • 2002
  • Pressure loads caused by gas, water and wind are the most important load cases in structural analysis. Often the pressure loads are approximated by constant directional loads since it is difficult to evaluate the exact value. However, the pressure load is defined as a displacement dependent one and it is necessary to consider the follower effects of the load in analysis procedure. In this study, the large deformation analysis considering geometrical nonlinearity for shell structures under pressure loads is presented. Finite element by using a three-node flat triangular shell element is formulated and the follower effects of the pressure load are included in the formulation. Some of results are presented for cantilevered beam under uniform external pressure and thin circular ring under non-uniform external pressure. The present results are in good agreement with the results available in existing literature and commercial software ABAQUS.

  • PDF

미세패턴 평판 금형가공 기술동향 (Trends of Flat Mold Machining Technology with Micro Pattern)

  • 제태진;최두선;전은채;박언석;최환진
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.1-6
    • /
    • 2012
  • Recent ultra-precision machining systems have nano-scale resolution, and can machine various shapes of complex structures using five-axis driven modules. These systems are also multi-functional, which can perform various processes such as planing, milling, turning et al. in one system. Micro machining technology using these systems is being developed for machining fine patterns, hybrid patterns and high aspect-ratio patterns on large-area molds with high productivity. These technology is and will be applied continuously to the fields of optics, display, energy, bio, communications and et al. Domestic and foreign trends of micro machining technologies for flat molds were investigated in this study. Especially, we focused on the types and the characteristics of ultra-precision machining systems and application fields of micro patterns machined by the machining system.

Effect of parapets to pressure distribution on flat top of a finite cylinder

  • Ozmen, Y.
    • Wind and Structures
    • /
    • 제17권5호
    • /
    • pp.465-477
    • /
    • 2013
  • In this paper, the effects of parapets on the mean and fluctuating wind pressures which are acting on a flat top of a finite cylinder vertically placed on a flat plate have experimentally been investigated. The aspect ratio (AR) of cylinder is 1 and the Reynolds number (Re) based on cylinder diameter and free stream velocity is 150000. The pressure distributions on the flat top and the side wall of the finite cylinder immersed in a simulated atmospheric boundary layer have been obtained for different parapet heights. The large magnitudes of mean and minimum suction pressures occurring near the leading edge were measured for the cases with and without parapet. They shift to the further downstream on the circular top with increasing parapet height. It is seen that the parapets reduce the local high suction on the top up to 24%.

경계요소 해석과 진동 실험을 이용한 단순 평판의 방사 음향 예측 (Estimation of sound radiation for a flat plate by using BEM and vibration experiment)

  • 김관주;김정태;최승권
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.843-848
    • /
    • 2000
  • BEA(Boundary Element Analysis) based on Kirchhoff-Helmholtz integral equation is widely used in the prediction of sound radiation problems of vibrating structures. Accurate estimation of sound pressure distribution by BEA can be [possible if and only if dynamic behavior of the relating structure was described correctly. Another plausible method of sound radiation phenomena could be the NAH(Nearfield Acoustic Holography) method. NAH also based on the identical governing equation with BEA could be one of the best acoustic imaging schemes but it has disadvantages of the complexity of measurement and of the need of large amount of measuring points. In this paper, modal expansion method is presented for taking accurate dynamic data of the structures efficiently. This method makes use of vibration principle an arbitrary dynamic behavior of the structure is described by the summation of that structures mode shapes which can be calculated by FEA easily and accurately. Sound pressure field from a vibration flat plate is calculated using the combination of vibration signal on that flat plate from experiment, and of the natural mode shapes form FEA. When sound pressure field from vibration signal is calculated the importance of the phase information was emphasized.

  • PDF