• Title/Summary/Keyword: flapping motion

Search Result 87, Processing Time 0.023 seconds

A Numerical Study on Aerodynamic Characteristics for Cyclic Motion Profile of Flapping Airfoil (Flapping Airfoil의 2차원 운동궤적에 따른 공력특성연구)

  • Jeong, Won-Hyeong;An, Jon;Lee, Gyeong-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.6-13
    • /
    • 2006
  • Aerodynamic characteristics for two-dimensional cyclic motion profile of flapping airfoil in low Reynolds number flows are investigated. Plunging motion and lead-lag motion in the two dimensional space with different plunging and lead-lag amplitudes are combined to cyclic motion profile and the flow around the airfoil is simulated. Present result shows that the improved aerodynamic efficiencies for a given flapping airfoil by adding periodic lead-lag motion of airfoil rather than the pure plunging case. The thrust coefficient and lift coefficient are compared with each cycle during the flapping period and aerodynamic characteristics are obtained on upstroke motion and downstroke motion.

Aerodynamic Analysis of a Rectangular Wing in Flapping with Lead-Lag Motion using Unsteady VLM (직사각형 평판날개의 리드래그 운동이 조합된 날개짓에 대한 비정상 VLM 공력 해석)

  • Kim, Woo-Jin;Kim, Hark-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2006
  • The unsteady vortex lattice method is used to model lead-lag in flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various lead-lag motion and reduced frequency with an amplitude of flapping angle(20o). To describe a motion profile of wing tip such as elliptic, line and circle, the phase difference of flapping and lead-lag motion was changed. And the effects of the motion profile on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

  • PDF

Thrust estimation of a flapping foil attached to an elastic plate using multiple regression analysis

  • Kumar, Rupesh;Shin, Hyunkyoungm
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.828-834
    • /
    • 2019
  • Researchers have previously proven that the flapping motion of the hydrofoil can convert wave energy into propulsive energy. However, the estimation of thrust forces generated by the flapping foil placed in waves remains a challenging task for ocean engineers owing to the complex dynamics and uncertainties involved. In this study, the flapping foil system consists of a rigid NACA0015 section undergoing harmonic flapping motion and a passively actuated elastic flat plate attached to the leading edge of the rigid foil. We have experimentally measured the thrust force generated due to the flapping motion of a rigid foil attached to an elastic plate in a wave flume, and the effects of the elastic plates have been discussed in detail. Furthermore, an empirical formula was introduced to predict the thrust force of a flapping foil based on our experimental results using multiple regression analysis.

A Study of an Airfoil for Optimal Aerodynamic Performance of Flapping Motion (Flapping운동의 최적공력성능을 위한 익형 연구)

  • Lee J. S.;Kim C.;Rho O. H.
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.24-32
    • /
    • 2003
  • In this work, we propose a new idea of flapping airfoil design for optimal aerodynamic performance from detailed computational investigations of flow physics. Generally, flapping motion which is combined with pitching and plunging motion of airfoil, leads to complex flow features such as leading edge separation and vortex street. As it is well known, the mechanism of thrust generation of flapping airfoil is based on inverse Karman-vortex street. This vortex street induces jet-like flow field at the rear region of trailing edge and then generates thrust. The leading edge separation vortex can also play an important role with its aerodynamic performances. The flapping airfoil introduces an alternative propulsive way instead of the current inefficient propulsive system such as a propeller in the low Reynolds number flow. Thrust coefficient and propulsive efficiency are the two major parameters in the design of flapping airfoil as propulsive system. Through numerous computations, we found the specific physical flow phenomenon which governed the aerodynamic characteristics in flapping airfoil. Based on this physical insight, we could come up with a new kind of airfoil of tadpole-shaped and more enhanced aerodynamic performance.

The Effect of Spanwise Flow and Wing Rotation on the Aerodynamic Characteristics in Flapping Motion (날개 길이방향 유동과 날개 회전이 날개짓 운동의 공기역학적 특성에 미치는 효과)

  • Oh, Hyun-Taek;Choi, Hang-Cheol;Chung, Jin-Taek;Kim, Kwang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.753-760
    • /
    • 2007
  • In a 3-D flapping motion, the spanwise flow is generated while the wing is moved on the stroke plane. And at the end of each stroke, the rotational circulation is generated due to a wing rotation. In this study, to evaluate the effect of spanwise flow and wing rotation on the aerodynamic characteristics in 3-D flap 753ping motion, a 3-D flapping motion was compared with a 2-D translating motion. In each flapping motion, the aerodynamic forces were measured with respect to the angles of attack and Reynolds number. The aerodynamic forces generated by 2-D translating motion were higher than those generated by 3-D flapping motion. While the lift of 3-D flapping motion was increased until the angle of attack $60^{\circ}$ at mid-stroke, the lift generated by 2-D translating motion was decreased above the angle of attack 40° at mid stroke. Also, at the end of each stroke, the aerodynamic forces were increased rapidly due to wing rotation.

An Experimental Study on Lift Force Generation Resulting from Spanwise Flow in Flapping Wings

  • Hong, Young-Sun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.86-103
    • /
    • 2006
  • Using a combination of force transducer measurement to quantify net lift force, high frame rate camera to quantify and subtract inertial contributions, and Digital Particle Image Velocimetry (DPIV) to calculate aerodynamic contributions in the spanwise plane, the contribution of spanwise flow to the generation of lift force in wings undergoing a pure flapping motion in hover is shown as a function of flapping angle throughout the flapping cycle. These experiments were repeated at various flapping frequencies and for various wing planform sizes for flat plate and span wise cambered wings. Despite the previous identification of the importance of span wise fluid structures in the generation of lift force in flapping wings throughout the existing body of literature, the direct contribution of spanwise flow to lift force generated has not previously been quantified. Therefore, in the same manner as commonly applied to investigate the chordwise lift distribution across an airfoil in flapping wings, spanwise flow due to bulk flow and rotational fluid dynamic mechanisms will be investigated to validate the existence of a direct component of the lift force originating from the flapping motion in the spanwise plane instead.

Experimental investigation on flow field around a flapping plate with single degree of freedom

  • Hanyu Wang;Chuan Lu;Wenhai Qu;Jinbiao Xiong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1999-2010
    • /
    • 2023
  • Undesirable flapping motion of discs can cause the failure of swing check valves in nuclear passive safety systems. Time-resolved particle image velocimetry (PIV) was employed to investigate the flow characteristics around a free-to-rotate plate and the motion response, with the Reynolds numbers, based on the hydraulic diameter of the channel, from 1.32 × 104 to 3.95 × 104. Appreciable flapping motion (±3.52°) appeared at the Reynolds number of 2.6 × 104 with the frequency of 5.08 Hz. In the low-Reynolds-number case, the plate showed negligible flapping. In the high-Reynolds-number case, the deflection angle increased with reduced flapping amplitude. The torque from the fluid determined the flapping amplitude. In the low-Reynolds-number case, Karman vortices were absent. With increasing Reynolds numbers, Karman vortices developed behind the plate with larger deflection angles. Strong interaction between the wake flow from the leading and trailing edge of the plate was observed. Based on power spectrum density (PSD) analysis, the vortex shedding frequency coincided with the flapping frequency, and the amplitude was positively correlated to the strength of the vortices. Proper orthogonal decomposition (POD) modes evince that, in the case of appreciable motion, coherent structures exhibited a larger spatial scale, enhancing the magnitude of the external torque on the plate.

Experimental Investigation on the Flapping Motions of Horizontal Merging Buoyant Jet Discharged into Stationary Ambient Water (정체수역으로 방류된 수평병합부력제트의 진동운동에 대한 실험적 연구)

  • Lyu, Si-Wan;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.691-698
    • /
    • 2005
  • A series of experiments has been performed to investigate the flapping motion, which has been generally considered as an intrinsic characteristic of plane flow, of the horizontal merging buoyant jet discharged into stationary ambient water. For Horizontal merging buoyant jets, the flapping motions has been observed and the average onsets of flapping motion coincided with the start of merging transition. The Strouhal number, which describes the measure of frequency of vortices on the flow boundary with respect to the local properties of the flow, varies and converges to a constant value over merging transition. Considering the merging transition and the variation of local flow properties, the characteristics of flapping motion of plane flow can be applied to merging buoyant jets.

PATH OPTIMIZATION OF FLAPPING AIRFOILS BASED ON NURBS

  • Kaya Mustafa;Tuncer Ismail H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.263-267
    • /
    • 2006
  • The path of a flapping airfoil during upstroke and down-stroke is optimized for maximum thrust and propulsive efficiency. The periodic flapping motion in combined pitch and plunge is described using Non-Uniform B-Splines(NURBS). A gradient based algorithm is employed for optimization of the NURBS parameters. Unsteady, low speed laminar flows are computed using a Navier-Stokes solver in a parallel computing environment based on domain decomposition. It is shown that the thrust generation is significantly improved in comparison to the sinusoidal flapping motion. For a high thrust generation, the airfoil stays at a high effective angle of attack for short durations.

  • PDF

Study on the Thrust Generation of Flapping Flat Plates for Microscale Biomedical Swimming Robots (초소형 의공학용 유영로봇을 위한 플래핑 평판들의 추력 발생 연구)

  • An, Sang-Joon;Kim, Young-Dae;Maeng, Joo-Sung;Han, Cheol-Heui
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.415-420
    • /
    • 2007
  • Creatures in nature flap their wings to generate fluid dynamic forces that are required for the locomotion. Small-size creatures do not use flapping wings. Thus, it is questionable at which Reynolds number the propulsion using the flapping wings are effective. In this paper, the onset conditions of the thrust generation from the combined motion of flat plates (heaving, pitching in the motion and also tandem, biplane in the array) is investigated using a Lattice Boltzmann method. To solve the pitching motion of the plate on the regularly spaced lattices, 2-D moving boundary condition was implemented. The present method is validated by comparing the wake patterns behind a oscillating circular cylinder and its hydrodynamic characteristics with the CFD results. Present method can be applied to the design of micro flapping propulsors for biomedical use.

  • PDF