• Title/Summary/Keyword: flapping

Search Result 185, Processing Time 0.025 seconds

Prediction of the Blade Flapping Angle for Korean Utility Helicopter by Applying Indirect Method (간접기법을 이용한 한국형 기동헬기 블레이드 플래핑 각도 예측)

  • Kim, Young-Jin;Lee, Sang-Gi;Lee, Seung-Jae;Chang, In-ki;Shim, Dai-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.888-895
    • /
    • 2015
  • This paper shows an approximate equation which calculates a flapping angle of blade for verification of KUH safety area. The flapping behavior of blade must be reviewed in an aspect of safety because of a collision possibility with airframe. However, it is difficult to measure an exact flapping angle during flight. A prediction equation of a coning angle is derived from aeromechanics and that of a dynamic flapping angle is derived from analysis results in development phase, respectively. Following, the equations are verified by comparison the flapping angle through an aircraft simulation test to a calculation. Finally, the safety area, which was established in development phase, is verified by calculating a flapping angle during the flight which is required by the terms of safety based on AC29 and FAR29.

Numerical Investigation on the Flapping Wing Sound (플래핑 날개의 음향 특성에 대한 수치 연구)

  • Bae, Young-Min;Moon, Young-J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3209-3214
    • /
    • 2007
  • This study numerically investigates the unsteady flow and acoustic characteristics of a flapping wing using a hydrodynamic/acoustic splitting method. The Reynolds number based on the maximum translation velocity of the wing is Re=8800 and Mach number is M=0.0485. The flow around the flapping wing is predicted by solving the two-dimensional incompressible Navier-Stokes equations (INS) and the acoustic field is calculated by the linearized perturbed compressible equations (LPCE), both solved in moving coordinates. Numerical results show that the hovering sound is largely generated by wing translation (transverse and tangential), which have different dipole sources with different mechanisms. As a distinctive feature of the flapping sound, it is also shown that the dominant frequency varies around the wing.

  • PDF

Study on the Thrust Generation of Flapping Flat Plates for Microscale Biomedical Swimming Robots (초소형 의공학용 유영로봇을 위한 플래핑 평판들의 추력 발생 연구)

  • An, Sang-Joon;Kim, Young-Dae;Maeng, Joo-Sung;Han, Cheol-Heui
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.415-420
    • /
    • 2007
  • Creatures in nature flap their wings to generate fluid dynamic forces that are required for the locomotion. Small-size creatures do not use flapping wings. Thus, it is questionable at which Reynolds number the propulsion using the flapping wings are effective. In this paper, the onset conditions of the thrust generation from the combined motion of flat plates (heaving, pitching in the motion and also tandem, biplane in the array) is investigated using a Lattice Boltzmann method. To solve the pitching motion of the plate on the regularly spaced lattices, 2-D moving boundary condition was implemented. The present method is validated by comparing the wake patterns behind a oscillating circular cylinder and its hydrodynamic characteristics with the CFD results. Present method can be applied to the design of micro flapping propulsors for biomedical use.

  • PDF

The Improvement of Aerodynamic Performance of Flapping-Airfoil Using Thickness Variation Airfoil (두께 변화가 있는 익형을 이용한 flapping-Airfoil의 공력성능 개선)

  • Lee Jung Sang;Kim Chongam;Rho Oh Hyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.787-790
    • /
    • 2002
  • In this work, numerical experiments ave conducted to find out the optimal shape of flapping-airfoil using thickness variation airfoils. In the previous study of flapping-airfoil, we had found that the thrust efficiency of thicker airfoil is better than thinner one, but the latter has higher thrust coefficient. Therefore, we have combined thin(NACA0009) and thick(NACA0015)airfoil to overcome these demerits of each airfoil. Using this combined airfoil, we can achieve acceptable aerodynamic performances from thrust efficiency and coefficient points of view. In order to computational study, we have used parallel-implemented incompressible Wavier-Stokes solver. Computational results show how to design leading and trailing edge shapes.

  • PDF

The Effect of Folding Wing on Aerodynamics and Power Consumption of a Flapping Wing

  • Lee, Seunghee;Han, Cheolheui
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.26-30
    • /
    • 2016
  • Experimental study on the unsteady aerodynamics analysis and power consumption of a folding wing is accomplished using a wind tunnel testing. A folding wing model is fabricated and actuated using servo motors. The flapping wing consists of an inboard main wing and an outboard folding wing. The aerodynamic forces and consumed powers of the flapping wing are measured by changing the flapping and folding wings inside a low-speed wind tunnel. In order to calculate the aerodynamic forces, the measured forces are modified using static test data. It was found that the effect of the folding wing on the flapping wing's total lift is small but the effect of the folding wing on the total thrust is larger than the main wing. The folding motion requires the extra use of the servo motor. Thus, the amount of the energy consumption increases when both the wings are actuated together. As the flight speed increases, the power consumption of the folding wing decreases which results in energy saving.

Modified thrust empirical formula of a flapping foil by including the effects of azimuth angles

  • Kumar, Rupesh;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.126-135
    • /
    • 2021
  • Wave energy is one of the most available sources of renewable energy in the world. It has been previously proven that the flapping foil can generate thrust forces using energy from the surface waves and an empirical formula was proposed to predict the thrust forces generated by a flapping foil consist of NACA0015 section (Kumar and Shin, 2019a). However, the proposed empirical formula was restricted to the head waves i.e. 0° azimuth angle which was not useful for the flapping foils encountering with oblique and following waves. Therefore, in this study, the thrust empirical formula was modified to include the effects of azimuth angles based on the experimentally obtained data. And the modified empirical equations were validated by the combination of foils experimentally.

Two-Dimensional Mechanism of Hovering Flight by Flapping Wings (날개짓에 의한 공중정지비행의 이차원 메카니즘)

  • Kim, Do-Kyun;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.759-764
    • /
    • 2003
  • Numerical simulations are conducted to investigate the mechanism of hovering flight by single flapping wing, and to examine the effect of the phase difference between the fore- and hindwings in hovering flight by two flapping wings. The numerical method used is based on an immersed boundary method in Cartesian coordinates. The Reynolds number considered is Re=150 based on the maximum translational velocity and chord length of the wing. For single flapping wing, the stroke plane angles are $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ and the downstroke angles of attack are varied for each stroke angle. Results show that for each stroke plane angle, there is an optimal angle of attack to maximize the vertical force. Below the stroke angle of $60^{\circ}$, wake capturing reduces the negative vertical force during the upstroke. For two flapping wings, The phase lags of the hindwing are $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The amplitudes of the stroke are 2.5 and 4.0 times the chord length at each phase lag. The results show that maximum vertical force is generated when the phase lag is zero, and the amplitude of the vertical force is minimum at the phase lag of $180^{\circ}$.

  • PDF

Aerodynamic Analysis of a Rectangular Wing in Flapping and Twisting Motion using Unsteady VLM (직사각형 평판 날개의 날개짓과 비틀림 운동에 대한 비정상 VLM 공력 해석)

  • Kim, U-Jin;Kim, Hak-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.14-21
    • /
    • 2006
  • The unsteady vortex lattice method is used to model twisting and flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various twisting angles and reduced frequency with an amplitude of flapping angle($20^{\circ}$). And the effects of the twisting on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

Experimental Investigation on the Flapping Motions of Horizontal Merging Buoyant Jet Discharged into Stationary Ambient Water (정체수역으로 방류된 수평병합부력제트의 진동운동에 대한 실험적 연구)

  • Lyu, Si-Wan;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.691-698
    • /
    • 2005
  • A series of experiments has been performed to investigate the flapping motion, which has been generally considered as an intrinsic characteristic of plane flow, of the horizontal merging buoyant jet discharged into stationary ambient water. For Horizontal merging buoyant jets, the flapping motions has been observed and the average onsets of flapping motion coincided with the start of merging transition. The Strouhal number, which describes the measure of frequency of vortices on the flow boundary with respect to the local properties of the flow, varies and converges to a constant value over merging transition. Considering the merging transition and the variation of local flow properties, the characteristics of flapping motion of plane flow can be applied to merging buoyant jets.

The Effect of Spanwise Flow and Wing Rotation on the Aerodynamic Characteristics in Flapping Motion (날개 길이방향 유동과 날개 회전이 날개짓 운동의 공기역학적 특성에 미치는 효과)

  • Oh, Hyun-Taek;Choi, Hang-Cheol;Chung, Jin-Taek;Kim, Kwang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.753-760
    • /
    • 2007
  • In a 3-D flapping motion, the spanwise flow is generated while the wing is moved on the stroke plane. And at the end of each stroke, the rotational circulation is generated due to a wing rotation. In this study, to evaluate the effect of spanwise flow and wing rotation on the aerodynamic characteristics in 3-D flap 753ping motion, a 3-D flapping motion was compared with a 2-D translating motion. In each flapping motion, the aerodynamic forces were measured with respect to the angles of attack and Reynolds number. The aerodynamic forces generated by 2-D translating motion were higher than those generated by 3-D flapping motion. While the lift of 3-D flapping motion was increased until the angle of attack $60^{\circ}$ at mid-stroke, the lift generated by 2-D translating motion was decreased above the angle of attack 40° at mid stroke. Also, at the end of each stroke, the aerodynamic forces were increased rapidly due to wing rotation.