• Title/Summary/Keyword: flammable

Search Result 513, Processing Time 0.023 seconds

The Measurement of Flash Point for Unflammable-Flammable Binary Mixtures(CCl4+o-Xylene and CCl4+p-Xylene) Using Open Cup Tester (개방식 장치를 이용한 난연성-가연성 이성분계 혼합물(CCl4+o-Xylene and CCl4+p-Xylene)의 인화점 측정)

  • Kim, Chang-Seob;Lee, Sungjin;Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.18-23
    • /
    • 2015
  • The flash point is used to categorize inflammable liquids according to their relative flammability. The flash point is important for the safe handling, storage, and transportation of inflammable liquids. The flash point temperature of two binary liquid mixtures($CCl_4+o-xylene$ and $CCl_4+p-xylene$) has been measured for the entire concentration range using Tag open cup tester. The flash point temperature was estimated using Raoult's law, UNIQUAC model and empirical equation. The experimentally derived flash point was also compared with the predicted flash point. The empirical equation is able to estimate the flash point fairly well for $CCl_4+o-xylene$ and $CCl_4+p-xylene$ mixture.

Calculation of the TNT Equivalent Mass of the Possible Explosion of CO, CH4, and C2H4 (CO와 CH4, C2H4 혼합 가스 폭발에 대한 TNT 등가량 계산)

  • Kim, Minju;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • Gas explosion accidents are steadily being issued due to increased gas consumption in Korea and foreign countries. To analyze the effects of these gas explosions, a TNT equivalent method is used. In this study, the TNT equivalent was calculated in the event of an explosion due to the volume content in the air of CO, CH4 and C2H4, the typical flammable gases emitted by coal. Also, the peak overpressure and impulse variation with the distance from explosion point were compared and analyzed by gas using the calculated equivalent value of TNT. The upper limit of the TNT equivalent for the three mixed gases is up to five times larger than the other gases mixture. In addition, the peak overpressure and impulse, which are factors of the TNT characteristic curve, are also increasing as the number of gases increases.

Assessment of Sleep Deprivation and Fatigue Among Chemical Transportation Drivers in Chonburi, Thailand

  • Phatrabuddha, Nantaporn;Yingratanasuk, Tanongsak;Rotwannasin, Piti;Jaidee, Wanlop;Krajaiklang, Narin
    • Safety and Health at Work
    • /
    • v.9 no.2
    • /
    • pp.159-163
    • /
    • 2018
  • Background: Fatigue and sleepiness are inter-related and common among road transport drivers. In this study, sleep deprivation and fatigue among chemical transportation drivers were examined. Methods: A cross-sectional study surveying 107 drivers from three hazardous types of chemical production and transportation industries (nonflammable gases, flammable gases, and flammable liquids) was conducted. Data on sleep deprivation were collected using questionnaires of the Stanford Sleeping Scale and the Groningen Sleep Quality Scale. Fatigue was assessed using an interview questionnaire and a flicker fusion instrument. Results: Chemical drivers had a mean sleeping scale (Stanford Sleeping Scale) of 1.98 (standard deviation 1.00) and had a mean score of 1.89 (standard deviation 2.06) on the Groningen Sleep Quality Scale. High-risk drivers had higher scores in both the Stanford Sleeping Scale and the Groningen Sleep Quality Scale with a mean score of 2.59 and 4.62, respectively, and those differences reached statistical significance (p < 0.05). The prevalence of fatigue, as assessed through a critical flicker fusion analyzer, subjective fatigue question, and either of the instruments, was 32.32%, 16.16%, and 43.43%, respectively. Drivers who slept <7 hours and had poor sleep quality were found to have more fatigue than those who slept enough and well. Drivers who had a more sleepiness score resulted in significantly more objective fatigue than those who had a less sleepiness score. Conclusion: Sleep quality and sleeping hour can affect a driver's fatigue. Optimization of work-rest model should be considered to improve productivity, driver retention, and road safety.

Risk Assessment of Fire and Explosion of Methane (메탄의 화재 및 폭발 위험성 평가)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.1-7
    • /
    • 2005
  • The thermochemical parameters for safe handling, storage, transport, operation and process design of flammable substances are explosive limit, flash point, autoignition temperature, minimum oxygen concentration, heat of combustion etc.. Explosive limit and autoignition temperature are the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limit and autoignition temperature of methane fur LNG process safety were investigated. By using the literatures data, the lower and upper explosive limits of methane recommended 4.8 vol$\%$ and 16 vol$\%$, respectively. Also autoignition temperatures of methane with ignition sources recommended $540^{\circ}C$ at the electrically heated cruicible furnace (the whole surface heating) and recommended about $1000^{\circ}C$ in the local hot surface. The new equations for predicting the temperature dependence and the pressure dependence of the lower explosive limits for methane are proposed. The values calculated by the proposed equations were a good agreement with the literature data.

  • PDF

Vacuum Safety

  • Ju, Jang-Heon
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.49-58
    • /
    • 2015
  • 진공 배기 시스템에 위험한 환경을 초래할 수 있는 모든 가능성을 찾아 낼 수는 없지만 누적된 현장 경험과 연구 결과에 맞추어 최대한 필요한 안전 조치들을 취해야 한다. 진공 배기 시스템이나 그 구성품들에 대한 심각한 파손을 유발하는 공통적인 요인들은 발화성 물질의 점화나 진공 배기 시스템의 배기구 막힘에 의해 발생한다. 따라서, 진공 펌프와 진공 시스템의 안전한 가동과 사용을 위해서는 다음과 같은 것들을 반드시 준수하여야 한다. ${\blacksquare}$ 발화성, 폭발성 공정 물질을 사용하는 진공 배기 시스템은 정규 유지 보수 작업(PM) 후 첫 번째 배기 과정은 매우 천천히 진행하여 진공 배기 시스템 내부에 급격한 난류가 형성되지 않도록 해 주어야 한다. ${\blacksquare}$ 진공 배기 시스템 내에서 발화성 물질들의 농도가 발화 영역(flammable zone, potentially explosive atmosphere)에 들어가지 않도록 하여야 한다. 이를 위해서는 불활성 가스를 이용하여 진공 펌프와 진공 배기 시스템의 가동 예상 조건이나 고장 환경하에서 안전한 농도 이하로 희석시켜야 한다. ${\blacksquare}$ 진공 펌프와 진공 배기 시스템에 장착되어 사용되는 밸브 등의 기계적 부품들이나 공정에 사용되는 물질과 공정 부산물들(by-products)로 인하여 배관, 필터 배기구 등이 막히지 않도록 하여야 한다. ${\blacksquare}$ 공정에 사용되는 물질들, 특히 산소($O_2$), 오존 ($O_3$) 등의 산화제 농도가 높을 때는 오일 회전 배인 진공 펌프(Oil rotary vane vacuum pump)에 미네랄(mineral) 오일을 사용하지 말아야 하며, PFPE(Perfluoropolyether) 오일을 사용하여야 한다. 시판되는 진공 펌프 오일 중 비발화성(non-flammable)으로 표기된 오일이라고 하더라도 산화제(oxidant)의 농도가 체적비로 30 % 넘는 공정 환경에는 사용하지 말아야 한다. ${\blacksquare}$ 진공 펌프와 진공 배기 시스템에 의해 배기되는 물질들이 물($H_2O$)과 격렬하게 반응하는 경우는 물이 아닌 다른 냉각제를 사용하여야 한다. ${\blacksquare}$ 안전하지 않다고 판단되는 상황에서는 해당 전문가의 조언이나 해당 전문가의 직접적인 현장 도움을 통해 문제를 해결하여야 한다.

Measurement and Prediction of Autoignition Temperature(AIT) of n-Decane+Ethylbenzene System (노말데칸과 에틸벤젠 계의 최소자연발화온도 측정 및 예측)

  • Lee, Jae-Hwa;Kim, Gui-Ju;Hong, Soon-Kang;Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.54-60
    • /
    • 2015
  • The autoignition temperature (AIT) of a material is the lowest temperature at which the material will spontaneously ignite. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs of n-decane+ethylbenzene system by using ASTM E659 apparatus. The AITs of n-decane and ethylbenzene which constituted binary system were $210^{\circ}C$ and $430^{\circ}C$, respectively. The experimental AITs of n-decane+ethylbenzene mixture were a good agreement with the calculated AITs by the proposed equations with about $11^{\circ}C$ A.A.D.(average absolute deviation).

A Study on the Development of Simulating Tool for Evaluation of Electrostatic Discharge (정전기 방전 평가를 위한 간이형 도구 개발에 관한 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.15-22
    • /
    • 2011
  • Explosion and fire cause about 30 reported industrial major accidents a year by ignition source which discharge of electrostatic generated to flammable gas, vapor, dust and mixtures. It brings economically and humanly very large loss that accident was caused by fire and explosion from electrostatic discharge. Thus, it is very important that electrostatic discharge energy is to be control below not to be igniting flammable mixtures. There are two kinds of analysis model for electrostatic discharge, human body model and machine model. Human body model is available the parameter of human's electrical equivalent that capacitance is 100 pF, resistance is $1.5k{\Omega}$. To simulate and visualize the electrostatic discharge from human body need a very expensive and high voltage simulator. In this paper, we measured the value of capacitance and resistance concerned with test materials and sizing of specimen and the value of charged voltage concerned with test specimen and distance to develop an electrostatic charge/discharge simulating tool for teaching with which concerned industrial employee and students. The result of experiments, we conformed that the minimum ignition energy of methane-oxygen mixtures meets well the equation $W=1/2CV^2$, and found out that the insulating material and sizing of equivalent value having human body mode are the poly ethylene of 200 mm and 300 mm of diameter. Developed electrostatic charge/discharge simulating tool has many merits; simple mechanism, low cost, no need of electric power and so on.

A Study on Possibility of fire ignition by Lime(CaO) (생석회에 의한 발화 가능성 연구)

  • Noh, Jeong-Yeob;Lee, Eui-Pyeong
    • Congress of the korean instutite of fire investigation
    • /
    • 2011.04a
    • /
    • pp.102-116
    • /
    • 2011
  • With the spread of FMD and AI in the country livestock farmers have used lime(CaO) prevalently and due to incorrect storage lime served as a fire ignition source in a number of cases. As combined chemically with water, lime has exothermic reaction. Then In these experiments we want to know how exothermic reaction - caused by lime - acts as sources of fire ignition in any circumstances and conditions. So we have done experimental work of ignition temperature and ignition process in the artificial conditions as lime combined chemically with water. As a result, we have confirmed that lime could be flammable material sufficiently as a fire ignition source with the proper presence of heat and moisture conditions. If the lime served as sources of fire ignition, as identification techniques of fire scene, we must ascertain the existence of water, flammable material and Calcium Hydroxide($Ca(OH)_2$). We should take special precautions in order to prevent fire and educate the safe handling of lime to the manufacturer and agricultural cooperative's joint livestock farmers who product or use lime.

  • PDF

Proposal and Analysis of DMR Process with Hydrofluorocarbon Refrigerants (Hydrofluorocarbon 냉매를 적용한 DMR 공정 제안 및 분석)

  • Park, Jinwoo;Lee, Inkyu;Shin, Jihyun;Moon, Il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Natural gas, one of the cleanest fossil fuel, is liquefied to reduce its volume for the long distance transportation. Small size floating liquefied natural gas plant has small area that safe issue is highly considered. However, Dual Mixed Refrigerants (DMR) process has fire potential by using flammable refrigerants and N2 Expander process has low compressed energy efficiency which has high inherent process safety. Therefore, safe process with high compressed energy efficiency is constantly needed. This study suggested an alternative refrigerants to existing DMR process by using Hydrofluorocarbon which has high safety due to its non-flammable properties. As a result, it showed 34.8% lower compressed energy efficiency than DMR process that contains fire potential whereas 42.6% improved compressed energy efficiency than Single N2 Expander process. In conclusion, this research proposed safe process for small size floating liquefied natural gas plant while having high efficiency.

Dependence of Explosion Overpressure of Flammable Gas on the Change of Volume Blockage Ratio of Facilities (설비 혼잡도에 따른 가연성 증기운의 폭발과압의 변화)

  • Lee, Seung Kuk;Lee, Da Eun;Kim, Sung Chan;Yoon, Kee Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.54-61
    • /
    • 2015
  • A series of CFD calculation has been conducted to investigate the effect of facility confinement on explosion power for process plant facility. The level of confinement of a facility was simplified with VBR(volume blockage ratio) and averaged size of obstacles. FLACS which is 3D CFD code of gas dispersion and the explosion was used for simulating the explosion phenomena in the idealized domain with different confinement level. The CFD results showed a tendency that the overpressure increases with increasing VBR and number of obstacles. The effect of VBR on the overpressure was relatively small for the case of number of obstacle less than 25. The results of this study can be used to provide a safety guideline considering the facility confinement in case of leakage accident of flammable gas and vapor in process plants.