• Title/Summary/Keyword: flammable

Search Result 511, Processing Time 0.021 seconds

A study on Preventive Measures for Fire and Explosion Accidents During Acetic Acid Handling in Manufacturing the Semiconductor Material (반도체 소재 제조 공정에서 아세트산 취급 작업 시 발생한 화재·폭발 사고 예방대책에 관한 연구)

  • Dae Joon Lee;Sang Ryung Kim;Sang Gil Kim;Kyo Shik Park;Joon Won Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.65-70
    • /
    • 2023
  • Flammable materials used in semiconductor supply facilities are manufactured at high temperatures and high pressures, and as the semiconductor industry becomes more sophisticated and larger, the amount of materials used is rapidly increasing. Recently, fires and explosions occurred during the handling of acetic acid, which is a raw material for making products in the semiconductor material manufacturing process. Overall problems such as lack of air inflow prevention for fire and explosion prevention were identified. Therefore, in this study, in order to accurately identify the cause of the accident and prevent fire and explosion that may occur in the process of handling large amounts of flammable liquids, opinions from various perspectives, such as construction of facilities such as hoppers, installation of AOPS components, and change in workers' perceptions would like to present.

Analysis of Fire Patterns of Flammable Liquids for Oil Flow Tests of Compartment Fires with Reduced Simulation (축소 모의된 구획 화재의 흘림 실험에 대한 인화성 액체의 화재 패턴 해석)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.28 no.3
    • /
    • pp.43-48
    • /
    • 2014
  • The purpose of this study is to analyze the flame propagation speed, radiation range, diffusion pattern and combustion completion time of a fire by filling a divided space with single combustible substance. It was found that the flame propagation speed was the fastest (0.2 s) for kerosene and the lowest (82.1 s) for alcohol. In the case of paint thinner, it took 19.0 s for the flame to reach its peak at the fastest speed after ignition while in the case of alcohol, it took 138.6 s for the flame to reach its peak at the lowest speed. In the case of the combustion of 200 ml of flammable liquids, the combustion completion time was 79.9 s for paint thinner, which is the shortest, 135 s for gasoline, 170 s for kerosene, 231.4 s for diesel and 337.0 s for alcohol. In addition, when flammable liquids are combusted, the lower part of the flame is governed by laminar flow pattern and the upper part of the flame showed turbulence pattern. In the case of a test performed for bean oil, it could be seen that if the fire source was removed, the flame was automatically extinguished without further combustion and that white smoke was generated due to incomplete combustion.

Measurement of Flash Point for Binary Mixtures of 2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane, and Toluene at 101.3 kPa (2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane 그리고 Toluene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.161-167
    • /
    • 2020
  • For the design of the prevention and mitigation measures in process industries involving flammable substances, reliable safety data are required. An important property used to estimate the risk of fire and explosion for a flammable liquid is the flash point. Flammability is an important factor to consider when developing safe methods for storing and handling solids and liquids. In this study, the flash point data were measured for the binary systems {2-butanol + 2,2,4-trimethylpentane}, {2-butanol + methylcyclohexane} and {2-butanol + toluene} at 101.3 kPa. Experiments were performed according to the standard test method (ASTM D 3278) using a Stanhope-Seta closed cup flash point tester. A minimum flash point behavior was observed in the binary systems as in the many cases for the hydrocarbon and alcohol mixture that were observed. The measured flash points were compared with the predicted values calculated via the following activity coefficient (GE) models: Wilson, Non-Random Two-Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC) models. The predicted data were only adequate for the data determined by the closed-cup test method and may not be appropriate for the data obtained from the open-cup test method because of its deviation from the vapor liquid equilibrium. The predicted results of this work can be used to design safe petrochemical processes, such as the identification of safe storage conditions for non-ideal solutions containing flammable components.

Proposal for Ignition Source and Flammable Material Safety Management through 3D Modeling of Hazardous Area: Focus on Indoor Mixing Processes (폭발위험장소 구분도의 3D Modeling을 통한 점화원 및 가연물 안전관리 방안 제안: 실내 혼합공정을 중심으로)

  • Hak-Jae Kim;Duk-Han Kim;Young-Woo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.47-59
    • /
    • 2024
  • Purpose: This study aims to propose measures for the prevention of fire and explosion accidents within manufacturing facilities by improving the existing classification criteria for hazardous locations based on the leakage patterns of flammable liquids. The objective is to suggest ways to safely manage ignition sources and combustible materials. Method: The hazardous locations were calculated using "KS C IEC 60079-10-1," and the calculated explosion hazard distances were visualized in 3D. Additionally, the formula for the atmospheric dispersion of flammable vapors, as outlined in "P-91-2023," was utilized to calculate the dispersion rates within the hazardous locations represented in 3D. Result: Visualization of hazardous locations in 3D enabled the identification of blind spots in the floor plan, facilitating immediate recognition of ignition sources within these areas. Furthermore, when calculating the time taken for the Lower Explosive Limit (LEL) to reach within the volumetric space of the hazardous locations represented in 3D, it was found that the risk level did not correspond identically with the explosion hazard distances. Conclusion: Considering the atmospheric dispersion of flammable liquids, it was concluded that safety management should be conducted. Therefore, a method for calculating the concentration values requiring detection and alert based on realistically achievable ventilation rates within the facility is proposed.

전자공업에서의 위험과 대책(1)

  • Yu, Jae-Hwan
    • Fire Protection Technology
    • /
    • s.13
    • /
    • pp.27-37
    • /
    • 1992
  • As the progress in electronic industry is very rapid, various materials are used in this area and it is very difficult to find the hazard of those materials. Also expensive equipments are concentrated and flammable liguids or toxic gases are used in the procsses, the possibility of loss in the fire is very high. So it is very important to analyze various risks and take the proper measures.

  • PDF

알코올화합물의 폭발특성 및 화염온도 예측에 관한 연구

  • 하동명
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.179-184
    • /
    • 1998
  • 가연성물질의 안전한 취급을 위해서는 이들 물질의 가장 기초적인 위험 특성 자료인 폭발한계(화재안전자료)에 대한 지식을 필요로 한다. 발화원이 존재할 때 가연성가스와 공기가 혼합하여 일정 농도 범위내에서만 연소가 이루어지는데 이 혼합범위를 폭발(연소)한계(explosive(flammable) limits) 또는 연소범위라 한다. (중략)

  • PDF

Development of Vertical Type Flammable Gas Generator for Food Waste (수직형 음식물류폐기물 가연성 가스 발생장치 개발)

  • Han, Doo-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.93-96
    • /
    • 2009
  • 논문에서는 음식물류폐기물을 건조 및 탄화시켜 감량화하는 과정에 필요한 수직형 음식물류폐기물 가연성 가스발생장치에 관한 것을 보고하였다. 수직형은 열효율이 좋고 수평공간을 작게 차지하여 토지의 효용을 높이고 구조가 상대적으로 단순하여 제작비를 줄일 수 있다.

  • PDF