• 제목/요약/키워드: flammability

검색결과 247건 처리시간 0.024초

The Prediction of Lower Flash Points by Optimization Method

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • International Journal of Safety
    • /
    • 제8권2호
    • /
    • pp.15-19
    • /
    • 2009
  • The flash point is the most widely used flammability property for the evaluation of the flammability hazard of combustible liquid mixtures. In this paper, the reported flash points for the the binary systems, ethylbenzene+n-butanol and ethylbenzene+n-hexanol were correlated by the optimization method. The optimization method based on the van Laar and Wilson equations were compared with the Raoult's law. The calculated values based on the optimization method were found to be better than those based on the Raoult's law.

고온·고압 조건에서 바이오디젤의 가연한계 예측 (A Prediction on the Flammability Limits of Biodiesel Fuel in the High Temperature and Pressure Conditions)

  • 임영찬;정준우;서현규
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.157-162
    • /
    • 2019
  • This numerical study was analyzed to predict the flammability limits of biodiesel and diesel fuels in the high temperature and pressure conditions. To achieve this, the biodiesel fuel was simulated with the chemical species of n-heptane (n-C7H16), methyl decanoate (C11H22O2), and methyl-9-decenoate (C11H20O2), and the diesel fuel was substituted the chemical species of n-heptane. The closed 0-D homogeneous reactor model which was employed the 1100 K of ambient temperature and 35 atm of ambient pressure was used for the simulation of constant volume combustion, and the equivalence ratio was changed from 0.3 to 2.5 conditions. In addition, a comparative analysis study was conducted with the results of HCCI engine simulation and flammability limits according to the changes of equivalence ratio. The results of combustion temperature, pressure, and ignition delay were increased when the equivalence ratio elevated from 0.3 to 1.3 conditions because the increase in fuel oxidation rate affects the chemical reaction of the overall combustion process. Furthermore, the CO and NOX production under the rich combustion conditions are considered to have a trade off relationship since the OH radicals and O2 chemical species are greatly affected the CO and NOX production and oxidation processes.

선박의 격벽, 천정, 내장재 및 표면바닥재의 화재안정성 평가방법 (Fire test procedures for flammability of bulkhead, ceiling and deck finish materials)

  • 김성윤;김동석;안병호;곽지현
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.117-119
    • /
    • 2008
  • 해상에서의 화재로부터 사람의 목숨과 재산을 보호하는 것은 대단히 중요하다. 따라서, "격벽, 천장, 갑판 마감재의 표면 연소성에 대한 개선된 화재시험절차에 관한 권고"는 선박의 격벽, 천정, 갑판 마감재의 연소특성을 결정짓기 위한 근거로써 화재 특성 및 그 재료들을 해상구조물에 사용함에 있어서 적합성을 측정하기 위한 절차를 규정하고 있다. 이 논문에서는 선박의 격벽, 천정, 내장재 및 표면바닥재의 화재안정성 평가방법을 제시하고 그 적정성을 평가하고자 한다. 또한 특이한 거동을 보이는 물질을 조사하고, 그 물질들의 적합한 시험방법을 제시하고자 한다.

  • PDF

열매체유의 인화성과 열안정성 (Flammability and Thermal Stabilities of Heat Transfer Oils)

  • 이근원;이정석;최이락
    • 한국가스학회지
    • /
    • 제15권2호
    • /
    • pp.82-87
    • /
    • 2011
  • 열매체유는 화학공장의 가열시스템, 열교환 시스템, 가스플랜트 공정, 사출성형 시스템 및 펄프제지 공정 등에 사용된다. 열매체유는 고열이나 산화분해에 아주 안정하고 저항성이 있으며, 누출이나 방출의 경우 점화원을 만나면 쉽게 발화한다. 본 논문은 열메체유의 신유와 사용유에 대해 인화성과 열적 안정성을 고찰하였다. 열매체유의 인화성은 인화점과 자연발화점을 측정하여 평가하였고, 열적안정성은 열안정성시험기와 시차주사열량기를 사용하여 평가하였다. 실험결과로부터 열매체유의 적절한 사용과 취급과 관련된 안전대책 수립을 위해 화재 위험 특성을 제시하였다.

인젝터 리세스와 추진제 공급유량이 메탄-산소 확산화염의 가연한계와 구조에 미치는 영향 (Effects of the Recess and Propellants Mass Flow on the Flammability Limit and Structure of Methane-Oxygen Diffusion Flame)

  • 홍준열;배성훈;김정수
    • 한국추진공학회지
    • /
    • 제22권1호
    • /
    • pp.28-35
    • /
    • 2018
  • 전단 동축형 인젝터를 통해 분사된 기체메탄-기체산소 확산화염의 가연한계와 구조분석을 위해 인젝터 리세스와 추진제 공급유량에 따른 연소실험이 수행되었다. 연구 결과, 추진제 운동량 플럭스 비가 증가함에 따라 높은 산화제 레이놀즈 수 구간에서도 안정적인 부착화염이 관찰되었으며, 인젝터 리세스는 화염의 형태와 가연한계에 큰 영향을 미치지 않음을 확인하였다. 자발광 기법을 통해 가시화된 부착화염은 추진제 분사조건이 변함에도 불구하고 항상 일정한 지점에서 최대 OH 라디칼 방사강도를 나타내었으며, 그 강도는 리세스에 의해 심하게 감소함을 확인하였다.

H$_2$의 연소한계에 미치는 F$_2$와 CIF$_3$의 영향 (The Effects of CIF$_3$and F$_2$on the Flammability Limit of H$_2$)

  • 이상곤
    • 한국안전학회지
    • /
    • 제9권3호
    • /
    • pp.53-59
    • /
    • 1994
  • Hydrogen(H$_2$) is used in the semiconductor industries, and some oxidizing gases such as fluoride(F$_2$) and chlorine trifluoride(CIF$_3$) are also used. As F$_2$and CIF$_3$are highly oxidizing gases, it were supposed to react vigorously with H$_2$. In this study, the flammability limit of F$_2$/$H_2$/Ar and CIF$_3$/$H_2$/Ar mixtures were investigated experimentally. As a result, it was found that the diluted F$_2$gas could be spontaneously ignited as compared to CIF$_3$mixture gas while being mixed with the diluted H$_2$gas. However, CIF$_3$diluted gas was not able to ignite spontaneously except for an electric spark. And the combustion characteristics and reaction kinetics were shown at the different diluted gases by the flammability diagram analyses between the F$_2$/$H_2$/Ar and CIF$_3$/$H_2$/Ar.

  • PDF

트리클로로 방향족 변성폴리에스테르를 함유한 폴리우레탄 난연도료의 합성과 난연최적화 (Synthesis and Flame - Retardant Optimization of Polyurethane Coatings Containing Trichloro Aromatic Modified Polyesters)

  • 황규현;김대원;함현식;박홍수
    • 한국응용과학기술학회지
    • /
    • 제17권4호
    • /
    • pp.240-247
    • /
    • 2000
  • Two-component polyurethane flame-retardant coatings were prepared by blending trichloro aromatic modified polyesters(TCMPs) and polyisocyanate. TCMPs were synthesized by polycondensation of trichlorobenzoic acid(TCBA), a flame-retardant component, with adipic acid, 1,4-butanediol, and trimethylolpropane. The content of TCBA was varied in 10, 20, and 30 wt% for the reaction. These new flame-retardant coatings showed various properties comparable to other non-flame-retardant coatings. Moreover, we carried out the combustion test and the flammability test for our flame-retardant coatings. The results of vertical burning test for the coatings containing more than 20 wt% of TCBA were determined as 'no burn'. The results of flammability test for the coatings with 20 wt% and 30 wt% of TCBA contents indicated the limiting oxygen index(LOI) values of 25% and 28% respectively, which implied relatively good flame retardancy.

Synthesis and Flame Retardant Improvement of PU Coatings Containing Trichloro Modified Polyester/IPDI-Isocyanurate

  • Kim, Ji-Hyun;Keun, Jang-Hyoun;Jung, Choong-Ho;Kim, Seung-Jin;Kim, Young-Geun;Kim, Seong-Kil;Park, Hong-Soo
    • 한국응용과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.332-340
    • /
    • 2008
  • Two component polyurethane (PU) flame retardant coatings were prepared by blending trichloro modified polyesters (TCMPs) and isophorone diisocyanate isocyanurate. TCMPs were synthesized by polycondensation of trichlorobenzoic acid (TCBA), a flame retardant component, with adipic acid, 1,4 butanediol, and trimethylolpropane. The content of TCBA was varied in 10, 20, and 30 wt% for the reaction. Theses new flame retardant coatings showed various properties comparable to other non flame retardant coatings. Moreover, we carried out the combustion test and the flammability test for our flame retardant coatings. The results of vertical burning test for the coatings containing more than 20 wt% of TCBA were determined as no burn. The results of flammability test for the coatings with 20 wt% and 30 wt% of TCBA contents indicated the limiting oxygen index (LOI) values of 26% and 29% respectively, which implied relatively good flame retardancy.

불활성기체로 희석된 동축류 확산화염의 파일럿화염에 의한 안정화 (Stabilization of Inert-Gas-Diluted Co-Flow Diffusion Flame by a Pilot Flame)

  • 안태국;이원남;박선호
    • 한국연소학회지
    • /
    • 제20권4호
    • /
    • pp.19-25
    • /
    • 2015
  • An experimental study was conducted to find the effect of a pilot flame on the flammability of inert-gas-diluted methane and propane. The diffusion pilot flame was formed with propane at the innermost nozzle of a concentric triple co-flow burner. The main diffusion flame was formed with nitrogen-diluted methane or propane at the outermost nozzle of the burner. An air flow was located in-between. The results showed that the existence of the pilot flame helped stabilizing the main flame even at the flammability limit concentration of nitrogen-diluted fuel. The co-flow burner generated re-circulation zones and local variation of equivalence ratio depending on the flow rates of the reactants, which are known to help flame stabilization. Hot-wire experiments confirmed that both heating of the reactants and supplying of active chemical species by the pilot flame contributed to stabilization of the main flame. The results of this study would suggest a design concept for an efficient SVRU system that minimizes the emission of unburned hydrocarbon fuel from ship fuel tanks.

A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation

  • Jeon, Joongoo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1749-1757
    • /
    • 2019
  • Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted, LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model, which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for $H_2-air$ mixtures up to $300^{\circ}C$ and $H_2-air-He$ mixtures up to 50 vol % helium concentration. Therefore, the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.