• 제목/요약/키워드: flames

검색결과 983건 처리시간 0.022초

에틸렌/공기 역확산 화염에서의 초기 매연 입자의 성장 특성 (The evolution characteristics of incipient soot particles in ethylene/air inverse diffusion flame)

  • 오광철;이은도;신현동;이의주
    • 한국연소학회지
    • /
    • 제9권2호
    • /
    • pp.38-44
    • /
    • 2004
  • The evolution of incipient soot particles has been examined by high resolution electron microscopy (HRTEM) and elemental analyzer in ethylene-air inverse diffusion flames. Laser Induced Incandescence(LII) and laser scattering methods were introduced for examining the soot volume fraction and morphological properties in combustion generated soot qualitatively. Soot particles, collected by thermophoretic sampling, were analyzed by using HRTEM to examine the nano structure of precursor particles. HRTEM micrographs apparently reveal a transformation of condensed phase of semitransparent tar-like material into precursor particles with relatively distinct boundary and crystalline which looks like regular layer structures. During this evolution histories, C/H analysis was also performed to estimate the chemical evolution of precursor particles. The changes of C/H ratio of soot particles with respect to residence time can be divided into two parts: one is a very slowly increasing regime where tar-like materials are transformed into precursor particles (inception process) the other is an increasing region with constant rate where surface growth affects the increase of C/H ratio dominantly (surface growth process). These results provide a clear picture of a transition to mature soot from precursor materials.

  • PDF

HANJUNG 석탄 실험연소로의 초기운전 (The First Operation of Coal Combustion Test Facility in HANJUNG)

  • 장길홍;장인갑;정석용;천무환;김중석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.79-84
    • /
    • 1998
  • In this paper we show design and operation of 1MWth pulverized coal combustion test facility. The test facility is consists of coal feeding system, furnace and flue gas treatment system. The furnace is equipped with a top-fired burner in order to avoid influence of gravity on the coal particles. There are two part of vertical(VP) and horizontal pass(HP) at furnace. We can measure temperature and species of coal flames in vertical pass. Also, there is horizontally arranged section where investigation regarding corrosion and deposit formation will be carried out. The burner of combustor was externally air staging burner(EASB) type made by IFRF. The pulverized high bituminous(Blair athol) coal from Australia was used as fuel, and the particle size less than 80 ${\mu}m$ was 83.4%. Overall excess air ratio was 1.2.

  • PDF

중유 화염 연소로에서 LNG와 왕겨분말의 재연소 효과 비교 (The Comparison Study on Reburning Effects of LNG and Rice Husk in Heavy Oil Flamed Furnace)

  • 신명철;김세원;이창엽
    • 한국연소학회지
    • /
    • 제14권4호
    • /
    • pp.25-32
    • /
    • 2009
  • In commercial combustion systems, heavy oil is one of main hydrocarbon fuel because of its economical efficiency. Regarding heavy oil combustion, due to increasing concerns over environmental pollutants such as carbon monoxide, unburned hydrocarbon and nitrogen oxides, development of low pollutant emission methods has become an imminent issue for practical application to numerous combustion devices. Also a great amount of effort has been tried to developed effective methods for practical using of biomass. It is also an important issue to reduce carbon tax. In this paper, an experimental study has been conducted to evaluate the effect of biomass reburning on NOx formation in a heavy oil flamed combustion furnace. Experiments were performed in flames stabilized by a multi-staged burner, which was mounted at the front of the furnace. Experimental tests were conducted using air-carried rice husk powder and LNG as the reburn fuel and heavy oil as the main fuel. The paper reports data on flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. NOx concentration in the exhaust has decreased considerably due to effect of reburning. The maximum NOx reduction rate was 62% when the rice husk was used by reburn fuel, however it was 59% when the LNG was used by reburn fuel. The result shows the positive possibility of biomass reburning system for optimal NOx reduction.

  • PDF

경유 화염에서 왕겨를 이용한 바이오매스 재연소의 NOx 저감 효과 (The Effect of Biomass Reburning with Rice Husk on NOx Reduction in Light Oil Flame)

  • 김세원;신명철;이창엽
    • 한국연소학회지
    • /
    • 제14권4호
    • /
    • pp.17-24
    • /
    • 2009
  • Reburning is one of the most useful technologies for reducing nitric oxide in economically and technically. The reburning process was demonstrated as an effective NOx reduction method through injection of a secondary hydrocarbon fuel. An experimental study has been conducted to evaluate the effect of biomass reburning on NOx and CO formation in a light oil flamed combustion furnace. Reburning tests on NOx reduction of air-carried rice husk powder as the reburn fuel and light oil as the main fuel were performed in flames stabilized by a co-flow swirl and fuel staged burner, which was mounted at the front of the furnace. The results included flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. It was observed clearly that NOx concentrations in the exhaust have considerably decreased due to effect of biomass reburning. The maximum NOx reduction rate was 42% when the reburn fuel fraction was 0.18. The CO emissions were kept under 42 ppmv in all experimental tests. And this paper makes clear that in order to decrease NOx concentration in the exhaust when the biomass reburning system is adapted, the control of some factors such as reburn fuel fraction and reburn zone fraction is very important.

  • PDF

Multi-cavity Piston에 의한 바이오디젤유의 연소성 향상에 관한 연구 (The Study for Improving the Combustion of Biodiesel Fuel using Multi-cavity Piston)

  • 방중철;김용재;박철환
    • 한국연소학회지
    • /
    • 제20권4호
    • /
    • pp.26-33
    • /
    • 2015
  • American NREL (National Renewable Energy Laboratory) reported that BD20 could reduce PM, CO, SOx and cancerogenic matters by 13.6%, 9.3%, 17.6% and 13% respectively, compared to diesel fuel. BD20 has been being tested on garbage trucks and official vehicles at Seoul City, which is positive on air environment, but negative on combustion by higher viscosity in winter season. This study investigated the combustion characteristics by employing multi cavity piston for improving the deterioration of combustibility caused by the higher viscosity of the biodiesel fuel such as BD20 with the combustion flames taken by a high speed camera and the cylinder pressure diagram. A 4-cycle single cylinder diesel engine was remodeled to a visible 2-cycle engine for taking the flame photographs, which has a common-rail injection system. The test was done at laboratory temperature of about $4{\sim}5^{\circ}C$.

엄밀한 동적 요소와 유한 요소 통합 해석 방법에 관한 연구 (A Study on the Combined Use of Exact Dynamic Elements and Finite Elements)

  • 홍성욱;조용주;김종선
    • 한국소음진동공학회논문집
    • /
    • 제12권2호
    • /
    • pp.141-149
    • /
    • 2002
  • Although the finite element method has become an indispensible tool for the dynamic analysis of structures, difficulty remains to quantify the errors associated with discretization. To improve the modeling accuracy, this paper proposes a method to make a combined use of finite elements and exact dynamic elements. Exact interpolation functions for the Timoshenko beam element are derived using the exact dynamic element modeling (EDEM) and compared with interpolation functions of the finite element method (FEM). The exact interpolation functions are tested with the Laplace variable varied. A combined use of finite element method and exact interpolation functions is presented to gain more accurate mode shape functions. This paper also presents a combined use of finite elements and exact dynamic elements in design/reanalysis problems. Timoshenko flames with tapered sections are tested to demonstrate the design procedure with the proposed method. The numerical study shows that the combined use of finite element model and exact dynamic element model is very useful.

1/f 변동리듬 특성을 가지는 음이 쾌적감성에 미치는 영향 (Effect of 1/f Fluctuation Sound on Comfort Sensibility)

  • 전용웅;조암
    • 대한인간공학회지
    • /
    • 제25권4호
    • /
    • pp.9-22
    • /
    • 2006
  • 1/f fluctuation characteristics can be seen in various natural phenomena, such as breezes, streams, candle flames and the luminous patterns of fireflies. It is said that the 1/f fluctuation are comfortable for human beings. And they are introduced into many industrial products, such as an air conditioner, music, lighting, etc. This study focused on verifying the effects of 1/f fluctuation sound on comfort sensibility. Stimulus were divided into three groups(Group 1, 2, 3) by sound generation methodology. Fluctuation patterns of group 1, 2 were given by three types of fluctuation, 1/f0, 1/f1, 1/f2, and its of group 3 were given by two types of pure tone, 1/f1. In order to verify the effects, we measured the physiological responses of the subjects such as EEG(Electroencephalogram), ERP(Event-Related Potential), and these physiological responses were compared with subjective assessments, free answers. Consequently, we found that factor which had an effect on comfort sensibility was cognitive factor(for stimulus) rather than 1/f fluctuation sound pattern.

열 및 운동량 손실이 예혼합화염의 연소불안정성에 미치는 영향에 관한 연구 (Investigation of Premixed Flame Instability with Heat and Momentum Losses)

  • 강상훈;백승욱;임홍근
    • 한국추진공학회지
    • /
    • 제9권3호
    • /
    • pp.101-119
    • /
    • 2005
  • 초소형 연소시스템의 응용을 위한 기초 자료로서, 열 및 운동량 손실이 예혼합화염의 연소불안정성에 미치는 영향에 대하여 수치적으로 연구하였다 고차정확도를 갖는 수치해석기법을 이용한 수치실험에서 운동량 손실은 Darrieus-Landau (D-L) 불안정성을 증진시키는 효과를 보였고 열손실은 diffusive-thermal (D-T) 불안정성을 활성화시키는 효과를 나타냈다. 이러한 영향은 화염의 비선형적 거동구간에도 유효하여 다중 셀의 분할 및 통합과정에서도 중요한 역할을 했다.

Instability of Evaporation Fronts in the Interstellar Medium

  • 김정규;김웅태
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.46.2-46.2
    • /
    • 2013
  • The neutral component of the interstellar medium (ISM) is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that the CNM--WNM evaporation interface, across which the CNM undergoes thermal expansion, is linearly unstable to corrugational disturbances, in complete analogy with the Darrieus-Landau instability (DLI) in terrestrial flames. To explore dynamical consequences of the DLI in the ISM, we perform a linear stability analysis of the DLI including the effect of thermal conduction as well as nonlinear hydrodynamic simulations. We find that the DLI is suppressed at short length scales via heat transport. The linear growth time of the fastest growing mode is proportional to the square of the evaporation flow speed of the CNM relative to the interface and is typically >10 Myr. In the nonlinear stage, perturbations grow into cusp-like structure protruding toward the WNM, and soon reach a steady state where the evaporation rate is increased by a factor of 2 compared to the initial state. We demonstrate that the amplitude of the interface distortion and enhancement in evaporation rate are determined primarily by the density ratio between the CNM and WNM. Given quite a long growth time and highly subsonic velocities at saturation, the DLI is unlikely to play an important role in the ISM dynamics.

  • PDF

직류 전기 아크로에서의 플라즈마 특성에 관한 수치해석 (Numerical Analysis on Plasma Characteristics of a DC Electric Arc Furnace)

  • 이종훈;한병윤;곽수민;이연원;김찬욱
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.212-218
    • /
    • 2003
  • In order to analyze the heat transfer phenomena in the plasma flames, a mathematical model describing heat and fluid flow in an electric arc has been developed and used to predict heat transfer from the arc to the steel bath in a DC Electric Arc Furnace. The arc model takes the separate contributions to the heat transfer from each involved mechanism into account, i.e. radiation, convection and energy transported by electrons. The finite volume method and a SIMPLE algorithm are used for solving the governing MHD equations, i.e., conservation equations of mass, momentum, and energy together with the equations describing a $\kappa-\epsilon$ model for turbulence. The model predicts heat transfer for different currents and arc lengths. Finally these calculation results can be used as a useful insight into plasma phenomena of the industrial-scale electric arc furnace. From these results, it can be concluded that higher arc current and longer arc length give high heat transfer.

  • PDF