• Title/Summary/Keyword: flame structure

Search Result 610, Processing Time 0.022 seconds

Simulation of Turbulent Premixed Flame Propagation in a Closed Vessel (정적 연소실내 난류 예혼합화염 전파의 시뮬레이션)

  • 권세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1510-1517
    • /
    • 1995
  • A theoretical method is described to simulate the propagation of turbulent premixed flames in a closed vessel. The objective is to develop and test an efficient technique to predict the propagation speed of flame as well as the geometric structure of the flame surfaces. Flame is advected by the statistically generated turbulent flow field and propagates as a wave by solving twodimensional Hamilton-Jacobi equation. In the simulation of the unburned gas flow field, following turbulence properties were satisfied: mean velocity field, turbulence intensities, spatial and temporal correlations of velocity fluctuations. It is assumed that these properties are not affected by the expansion of the burned gas region. Predictions were compared with existing experimental data for flames propagating in a closed vessel charged with hydrogen/air mixture with various turbulence intensities and Reynolds numbers. Comparisons were made in flame radius growth rate, rms flame radius fluctuations, and average perimeter and fractal dimensions of the flame boundaries. Two dimensional time dependent simulation resulted in correct trends of the measured flame data. The reasonable behavior and high efficiency proves the usefulness of this method in difficult problems of flame propagation such as in internal combustion engines.

The Effect of N2 Dilution on the Flame Stabilization in a Non-Premixed Turbulent H2 Jet with Coaxial Air (질소 희석이 수소 난류확산화염의 화염안정성에 미치는 영향)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.477-485
    • /
    • 2009
  • The study of nitrogen dilution effect on the flame stability was experimentally investigated in a non-premixed turbulent lifted hydrogen jet with coaxial air. Hydrogen gas was used as a fuel and coaxial air was used to make flame liftoff. Each of hydrogen and air were injected through axisymetric inner and outer nozzles ($d_F=3.65\;mm$ and $d_A=14.1\;mm$). And both fuel jet and coaxial air velocity were fixed as $u_F=200\;m/s$ and $u_A=16\;m/s$, while the mole fraction of nitrogen diluents gas was varied from 0.0 to 0.2 with 0.1 step. For the analysis of flame structure and the flame stabilization mechanism, the simultaneous measurement of PIV/OH PLIF laser diagnostics had been performed. The stabilization point was selected in the most upstream region of the flame base and defined as the point where the turbulent flame propagation velocity was equal to the axial component of local flow velocity. We found that the turbulent flame propagation velocity increased with the decrease of nitrogen mole fraction. We concluded that the turbulent flame propagation velocity was expressed as a function of turbulent intensity and axial strain rate, even though nitrogen diluents mole fraction was changed.

Interacting Effects of an Ultrasonic Standing-wave on the Propagation Behavior and Structural Stabilization of Propane/Air Premixed Flame (프로판/공기 예혼합화염의 전파거동 및 구조안정화에 대한 정상초음파의 간섭효과)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • An experimental study has been conducted to scrutinize into the influence of ultrasonic standing wave on the propagating behavior and structural stabilization of propane/air premixed flame at various equivalence ratios in half-open rectangular duct. Evolutionary features of the flame fronts are caught by high-speed images, and the variation of flame structure and local flame velocities along the propagation are analyzed. It is revealed that the propagation velocity agitated by the ultrasonic standing wave is greater than that without the agitation: the velocity enhancement diminishes as the equivalence ratio approaches the stoichiometric. Influence of standing wave on the flame overwhelms that of the buoyancy which slants the flame front towards top of the duct, and thus the standing wave contributes to the structural stabilization of propane/air premixed flame.

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(II) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구(2))

  • Choe, Byeong-Ryun;Jang, In-Gap;Choe, Gyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1050-1060
    • /
    • 1996
  • Recently, attention has been paid to the flame diagnostic by noncontact methods which dose not deform the flame shape. One of them is a method which is using the radical luminous intensity. Generally, this diagnostic method using radical luminous has been investigated its reliability by applying to laminar flame. This study, however, investigated each radical luminous signals through stocastical analysis like auto-correlation, cross-correlation, phase and coherence which were acquired from measuring radical luminous intensity of OH, CH, $O_{2}$, radicals in turbulent diffusion flame. To compare radical luminous intensity in flame with temperature, ion current and concentration , radious distribution of each properties was investigated and considered. In radical luminous intensity, correlation in the reaction zone of flame was higher than in correlation in combusted gas zone. And radious distribution of radical luminous intensity was corresponded with radious distribution of temperature, ion current and concentration. The result of the study confirms that a radical luminous flame diagnosis is possible in the turbulent diffusion flame.

Mixed Structure Effect of Fuel and Air on Rotary Kiln Burner Flame (연료 및 공기의 혼합구조가 로타리 킬른 용 버너 화염에 미치는 영향)

  • Kim, Youngho;Lee, Cheolwoo;Kim, Insu;Lim, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.339-342
    • /
    • 2014
  • Rotary kiln produces lime from limestone through thermal decomposition. Ring formation in kiln internal wall is known issue that decreases productivity. The cause of ring formation is temperature imbalance as flame leans toward upper wall. Therefore, burner nozzle geometry was changed to improve air-fuel mixing state which leads to prevention of ring formation. CFD simulation and experimental test were performed in this study to investigate the effect of air-fuel mixing on flame structure, temperature and $NO_X$ concentration. It is shown that combustion efficiency has been enhanced and $NO_X$ concentration has been decreased by using swirl flow for secondary combustion air. It's also shown that flame has been straightened by using straight flow for secondary combustion air.

  • PDF

A Study of Flams Structure and Combustion Characteristics in a Premixed Flame Stabilized by a Stramlined Step(I) (유선형스텝에 의해 안정화된 예혼합 화염의 구조와 연소특성에 관한 연구(I))

  • 이재득;최병륜
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 1990
  • In a premixed flame stabilized by a streamlined step, the flame structure and combustion characteristics were investigated to identify the effect of the pressure pulsation in a combustion air. A flame stabilizing limits, visualization, mean temperature, ion current and gas concentration (O$_{2}$, CO$_{2}$, CO, UHC) were measured. With the combustion air of higher pressure pulsation, the development of the mixing layer was fast and wide, the temperature and combustion intensity were higher at arbitrary section. But, the effect was notably decreased with X=150 mm downstream. And a first eddy formation from step edge was earlier. Thus, with the combustion air of higher pressure pulsation, high rate of heat generation was expected.

  • PDF

Application of Weighted Sum of Gray Gases Model with Gray Gas Regrouping for Opposed Flow Flames (대향류화염에서의 회색가스재조합 회색가스가중합법의 적용)

  • Park, Won-Hee;Kim, Tae-Kuk
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.2
    • /
    • pp.9-17
    • /
    • 2005
  • WSGGM with gray gas regrouping is successfully applied to study the flame structure of opposed flow flames including effect of radiative transfer. The statistical narrow band model is used to obtain the benchmark solutions. Results obtained by using the optically thin model are shown to overestimate the emission and to predict the flame structures inadequately especially for optically thick and low stretch rate flames. Computed results by using the WSGGM with 10 gray gases and SNB model show reasonable agreements with each other, and the required calculation time for the WSGGM is acceptable for engineering applications.

  • PDF

Effect of $CO_2$ Addition on Flame Structure and NOx Formation of $CH_4-Air$ Counterflow Diffusion Flames ($CO_2$ 첨가가 $CH_4$-공기 대향류 확산화염의 구조 및 NOx 생성에 미치는 영향)

  • Lee, S.R.;Han, J.W.;Lee, C.E.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.97-108
    • /
    • 1999
  • This numerical study was to investigate the effect of $CO_2$ addition on the structures and NOx formation characteristics in $CH_4$ counterflow diffusion flame. The importance of radiation effect was identified and $CO_2$ addition effect was investigated in terms of thermal and chemical reaction effect. Also the causes of NOx reduction were clarified by separation method of each formation mechanisms. The results were as follows : The radiation effect was intensified by $CO_2$ addition. Thermal effect mainly contributed to the changes in flame structure and the amount of NO formation but the chemical reaction effect also cannot be neglected. The reduction of thermal NO was dominant with respect to reduction rate, but that of prompt NO was dominant with respect to total amount.

  • PDF

Unsteady Flamelet Modeling of Turbulent Nonpremixed Flames (비정상 층류화염편 모델을 이용한 비예혼합 난류화염 해석)

  • Kim, Seong-Ku;Kang, Sung-Mo;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.133-141
    • /
    • 2000
  • The present study is focused on modeling the transient behavior of the local flame structure which is especially important for slow reaction processes, such as NOx formation in the radiating flame field. The recently developed unsteady flamelet model has been applied to analyze a steady, turbulent jet flame. Numerical results are compared with experimental data and numerical results of the conventional steady flamelet model. The numerical result reveals that the unsteady flamelet model correctly predicts the nonequilibrium effect upsteam and the subsequent decay of the superequilibrium radical concentrations the further downstream.

  • PDF

Unsteady Flamelet Modeling of Turbulent Nonpremixed Flames (비정상 층류화염편 모델을 이용한 비예혼합 난류화염 해석)

  • Kim, Seong-Ku;Kang, Sung-Mo;Seo, Bo-Sun;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.8-16
    • /
    • 2001
  • The present study is focused on modeling the transient behavior of the local flame structure which is especially important for slow reaction processes, such as NOx formation in the radiating flame field. The unsteady flamelet model recently developed has been applied to analyze a steady, turbulent jet flame. Numerical results are compared with experimental data and numerical results of the conventional steady flamelet model. The numerical result reveals that the unsteady flamelet model correctly predicts the nonequilibrium effect upsteam and the subsequent decay of the superequilibrium radical concentrations further downstream.

  • PDF