• Title/Summary/Keyword: flame structure

Search Result 610, Processing Time 0.026 seconds

Large-Scale Turbulent Vortical Structure Inside a Sudden Expansion Cylinder Chamber (급 확대부를 갖는 실린더 챔버 내부 유동의 큰 척도 난류 보텍스 구조에 관한 연구)

  • Seong, Hyeong-Jin;Go, Sang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.905-914
    • /
    • 2001
  • A large eddy simulation(LES) is performed for turbulent flow around a bluff body inside a sudden expansion cylinder chamber, a configuration which resembles a premixed gas turbine combustor. To promote turbulent mixing and to accommodate flame stability, a flame holder is installed inside the combustion chamber. The Smagorinsky model is employed and the calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of the inlet pipe. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The predicted turbulent statistics are evaluated by comparing them with the laser-doppler velocimetry (LDV) measurement data. The agreement of LES with the experimental data is shown to be satisfactory. Emphasis is placed on the time-dependent evolutions of turbulent vortical structure behind the flame holder. The numerical flow visualizations depict the behavior of large-scale vortices. The turbulent mixing process behind the flame holder is analyzed by visualizing the sectional views of vortical structure.

Structure and Suppression of Nonpremixed Counterflow Flames (비예혼합 대향류화염의 구조와 소화)

  • Anthony Hamins;Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.20-25
    • /
    • 2003
  • Measurements with filaments and thermocouples and computations with Oppdif and FDS were carried out to investigate the impact of flame strain, agent addition, and buoyancy on the structure and extinction of nonpremixed counterflow flames. Measurements through 2.2 s drop tests in microgravity conditions and experiments in normal gravity conditions were compared with the results of computations. For the global strain rates 7 s$^{-1}$ through 100 s$^{-1}$ , the turning point behavior in the critical nitrogen concentration at O-g was confirmed. The effects of buoyancy, that is, changes in the flame curvature and thickness were also confirmed by the computations with FDS. There was agreement in the peak flame temperature and its position between the computations and the measurements in the near extinction methane/air diffusion flames in microgravity.

Characterization of the Effect of the Inlet Operating Conditions on the Performance of Lean Premixed Gas Turbine Combustors

  • Samperio, J.L.;Santavicca, D.A.;Lee, J.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.3
    • /
    • pp.10-18
    • /
    • 2004
  • An experimental study of the effect of operating conditions on the behavior of a lean premixed laboratory combustor operating on natural gas has been conducted. Measurements were made characterizing the pressure fluctuations in the combustor and the flame structure over a range of inlet temperatures, inlet velocities and equivalence ratios. In addition the fuel distribution at the inlet to the combustor was varied such that it was an independent parameter in the experiment. Inlet temperature, inlet velocity and equivalence ratio were all found to have an effect on the stability characteristics of the combustor. The nature of this effect, however, depended on the fuel distribution. For example, with one fuel distribution the combustor would become unstable when the temperature was increased, whereas with a different fuel distribution the combustor would become unstable when the temperature was decreased. Similarly, the operating conditions had an effect on the flame structure. For example the intensity-weighted center of mass of the flame was found to move closer to the center body as either the temperature or equivalence ratio increased. It was interesting and somewhat surprising to note, however, that as the location of the center of mass changed with operating conditions it did so by moving along a line of constant flame angle.

  • PDF

Effects of Flame Temperature on the Characteristics of Flame Synthesized $TiO_{2}$ Nanoparticles (화염온도에 따른 $TiO_{2}$ 나노입자의 결정구조 및 입자크기 변화)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Bae, Gwi-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1347-1352
    • /
    • 2004
  • In this work, $TiO_{2}$ nanoparticles were synthesized using a $N_{2}-diluted$ hydrogen coflow diffusion flame. The effect of flame temperature on the crystalline structure and the size of formed nanoparticles was investigated. The maximum centerline temperature of the flame ranged from 1,920K for $H_{2}-only$ flame to 863K for 81% $N_{2}-diluted$ flame. When the temperature was higher than about 1,000K, the particle size was tend to increase due to the agglomeration and sintering among the primary particles. On the other hand, when the temperature was lower than 1,000K, the portion of anatase phase was greater than 80%.

  • PDF

Concentration Gradient Effects on Liftoff Characteristics of Triple Flame on a Slot Burner (슬롯 버너에서 농도 구배가 삼지 화염의 부상 특성에 미치는 영향)

  • Seo, Jeong-Il;Kim, Nam-Il;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.99-105
    • /
    • 2002
  • The concentration gradient effects on triple flame have been studied experimentally using a slot burner in order to stabilize stationary triple flame in coflowing stream. By means of contraction we generate the coflowing stream with uniform velocity and linear concentration gradient at the outlet of the slot. In this paper we investigated the response of the triple flame. to the concentration gradient, like the stability, the liftoff height, and the structure of triple flame. Flow velocity is measured with Laser Doppler Velocimetry. As the concentration gradient increases. the flame propagation velocity in immediately upstream triple point increases until the liftoff height of triple flame becomes minimum, and then decreases.

  • PDF

The Characteristic Modes and Structures of Bluff-Body Stabilized Flames in Supersonic Coflow Air (초음속 공기장에서 Bluff-Body를 이용한 안정화염의 특성과 구조)

  • Kim, Ji-Ho;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.147-153
    • /
    • 2002
  • Experimental investigations are performed on the stability and the structure of bluff-body stabilized hydrogen flames. The velocities of coflow air are varied from subsonic to supersonic velocity of Mach 1.8 and OH PLIF images and Schilieren images are used for analysis. Three characteristic flame modes are classified into three regimes with the variation of fuel-air velocity ratio; a jet like flame, a central-jet dominated flame and a recirculation zone flame. Stability curves are drawn to find the blowout regimes and to show that flame stability is improved by increasing the lip thickness of fuel nozzle that works as bluff-body. $Damk{\ddot{o}hler$ number is adopted in order to scale the blowout curves of each flame obtained at different sizes of the bluff-body and all blowout curves are scaled successfully regardless of its bluff-body size.

  • PDF

Synthesis of Flame Retardants for ABS using Cyclophosphazene (Cyclophosphazene을 이용한 ABS용 난연제의 합성)

  • Shin, Young-Jae;Kim, Hae-Young;Shin, Jae-Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.142-151
    • /
    • 2007
  • Non-halogen flame retardant have been focus of extensive research because of environmental problem. Hexakisphenokycyclotriphosphazene was synthesized in order to use as the flame retardant of ABS resin. And using bisphenol A, bisphenol S, and resorcinol, the polymers which contained cyclophosphazene structure were synthesized in order to also use as the flame retardants of ABS resin. All of the synthesized polymers themselves got the excellent flame retardancy. And as the molecular weight of the compound were increased, the thermal stability was increased. But when the synthesized compounds were used as the flame retardants for ABS resin, the lower molecular weight compound in these compounds showed the better flame retardancy and the better physical properties of ABS resin. In case of using resorcinol, it showed the best flame retardancy.

Understanding and Engineering Meaning of Meso-Scale Combustion Phenomena (메소-스케일 연소 현상의 공학적 의미와 이해)

  • Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.287-289
    • /
    • 2015
  • Meso-scale combustion is defined as combustion phenomena within limited characteristic length scales that are comparable with the laminar flame length scales. In the laminar flame theory, four representative length scales have been involved; i.e., a reaction layer thickness, a thermal layer thickness, a quenching distance, and a Markstein length. When the effects of these length scales on the flame characteristics are understood, the laminar flame theories can be clarified. Therefore, a study on the meso-scale combustion phenomena should not be thought as just a specific phenomena occurring in an exceptional combustion condition. Instead, all combustion phenomena within meso-scale spaces need to be explained by our knowledge. During this challenge, our understanding on laminar flame structures can be extended. Considering that most turbulent combustion phenomena in engineering application are still have local laminar flame structures, studies on laminar flame structures need to be re-visited especially in academic aspects.

  • PDF

Characterization of the Microstructure and the Wear Resistance of the Flame-Quenched Cu-8.8Al-4.5Ni-4.5Fe Alloy (화염급냉 표면처리된 Cu-8.8Al-4.5Ni-4.5Fe 합금의 미세구조 분석 및 내마모성에 관한 연구)

  • Lee, M.K.;Hong, S.M.;Kim, G.H.;Kim, K.H.;Kim, W.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.6
    • /
    • pp.346-355
    • /
    • 2004
  • The flame quenching process has been employed to modify the surfaces of commercial marine propeller material, aluminum bronze alloy (Cu-8.8Al-5Ni-5Fe), and the microstructure, hardness and wear properties of the flame-quenched layers have been studied. The thermal history was accurately monitored during the process with respect to both the designed maximum surface temperature and holding time. The XRD and EDX analyses have shown that at temperatures above $T_{\beta}$, the microstructure consisting of ${\alpha}+{\kappa}$ phases changed into the ${\alpha}+{\beta}^{\prime}$ martensite due to an eutectoid reaction of ${\alpha}+{\kappa}{\rightarrow}{\beta}$ and a martensitic transformation of ${\beta}{\rightarrow}{\beta}^{\prime}$. The ${\beta}^{\prime}$ martensite phase formed showed a face-centered cubic (FCC) crystal structure with the typical twinned structure. The hardness of the flame-quenched layer having the ${\alpha}+{\beta}^{\prime}$ structure was similar to that of the ${\alpha}+{\kappa}$ structure and depended sensitively on the size and distribution of hard ${\kappa}$ and ${\beta}^{\prime}$ phases with depth from the surface. As a result of the sliding wear test, the wear resistance of the flame-quenched layer was markedly enhanced with the formation of the ${\beta}^{\prime}$ martensite.

An Experimental Study on the Flame Dynamics in Ducted Combustor (덕트형 연소기에서 화염의 동특성에 관한 실험적 연구)

  • Jeong, Chanyeong;Kim, Taesung;Song, Jinkwan;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.121-131
    • /
    • 2013
  • The characteristics of flame dynamics occurring near the bluff body was experimentally investigated in a model combustor with V-gutter bluff body. Measurements of chemiluminescence with high speed camera and PIV were performed for visualization of flame structure. Flashback occurs due to the change of pressure gradient in the combustor, and the flashback distance depends on equivalent ratio. Unstable flames can be classified into three types depending on the flashback distance and structure. When the flame goes over the bluff body, an unusual flame structure occurs at the front of the bluff body. Re-stabilization takes place as the flame moves downstream of the combustor. This process is supported by a strong vortex structure behind the bluff body.