• Title/Summary/Keyword: flame size

Search Result 312, Processing Time 0.023 seconds

Soot Concentration and Temperature Measurements in Laminar Ethylene Jet Double-concentric Diffusion Flames (동축 이중 에틸렌 확산화염의 매연 농도분포 및 온도 측정)

  • Lee, Gyo-U;Jeong, Jong-Su;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.402-409
    • /
    • 2002
  • Experiments were performed with double-concentric diffusion flame(DDF) in order to investigate the characteristics of soot formation and temperature distributions. The flame size and shape of the DDF are similar to those of the well-known normal co-flow diffusion flame(WF), except the formation of a tiny inverse flame near the central tube exit. A laser light extinction technique was used to measure the soot volume fractions. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple. Soot concentrations along the flame axis of the DDF were higher than those of the NDF. However, the maximum soot volume fraction of the DDF along the periphery of the flame was lower than that of the NDF. It is mainly due to the effect of nitrogen-dilution from the inner air. Measured temperature distribution explains these trends of soot concentration. The temperature along the flame axis was also higher in DDF than that of the NDF. However, the flame temperatures at the flame front of the two flames were almost same regardless of the inner flame. This phenomenon means that the inverse flame inside the DDF did not affect on the flame structure including the temperature and soot concentration, except the region around the flame axis.

An Experimental Study of Smoke Movement of the Various Fire Location in Room (실내공간에서 화재 발생위치에 따른 연기거동에 대한 실험연구)

  • Yu, Hong-Seon;Jeong, Jin-Yong;Lee, Jae-Ha;Hong, Gi-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.703-709
    • /
    • 2002
  • In order to investigate the smoke movement in three dimensional room fires, the center fire, wall fire and corner fire plume in different sized fires were studied experimentally by rectangular pool fire using methanol as a fuel. As the fire size became larger for the center fires placed at the center of the floor, the air flow rate entrained through the opening, average hot layer temperature, flame angle deflected backwards and mean flame height was observed to increase. On the other hand, as the fire size became smaller, the neutral plane height in the door and time reached steady-state was observed to decrease. The average hot layer temperature, mean flame height and doorway neutral plane height obtained from comer fire were higher than those produced by wall fires and center fires. The simple model for describing the effect of walls on the mean flame height was presented. It was shown that the model provides a good description of the present measurements, when used with the assumption by Hansell(1993), that the increase of the average flame height is equal to the ratio of the open to the total perimeters of the trays. Also the two models for predicting the effects of walls on the mean flame height were presented. These models overestimated the measured values of the mean flame height above fuel trays close to a wall and in a corner by approximately 19-26%, respectively.

Oscillatory Instability of Low Strain Rate Edge Flame (저신장율 에지 화염의 진동 불안정성)

  • Kim Kang-Tae;Park June-Sung;Kim Jeong-Soo;Oh Chang-Bo;Keel Sang-In;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.343-349
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral flame size was less than burner nozzle diameter and thus lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The oscillation is the direct outcome from the advancing and retreating edge flame. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which can be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

A Study on the Refinement of Turbulent Flame Propagation Model for a Spark-Ignition Engine (스파크 점화기관의 난류화염전파 모델의 개선에 관한 연구)

  • 최인용;전광민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2030-2038
    • /
    • 1995
  • In this study, three turbulent flame propagation models are compared using experimentally measured data of a 4 valves/cylinder spark-ignition engine. First two conventional models are B.K model and GESIM combustion model. The burning rates calculated from the two models are compared with the burning rates calculated from measured pressure data using the one-zone heat release analysis. GESIM combustion model predicts burning rates closer to the data acquired from the experiment in wide operating ranges than B-K model does. The third model is refined based on GESIM combustion model by including the effect of flame stretch, turbulent length scale band pass filter and a variable that considers flame size and the area of flame contacting the cylinder wall surface. The refined combustion model predicts burning rates closer to experimental results than GESIM combustion model does. Also, the refined combustion model predicts flame radius close to the experimental result measured by using optical fiber technique.

Morphological Study on the Soot Transition in a Propane/Air Laminar Diffusion Flame (프로판 층류확산화염의 그을음 천이에 대한 형태학적 연구)

  • Shim, Sung-Hoon;Yoo, Chang-Jong;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.24-33
    • /
    • 2002
  • The morphology of deposits on $15-{\mu}m$ thin SiC filaments has been investigated with SEM in a co-flowing, propane/air laminar diffusion flame. The average size of mature soot particles deposited in the luminous flame edge is strongly dependent on their axial position in a typical heavily sooting flame. The surface growth of liquid-phase PAHs molecules and the transition to soots from fully-developed precursors could be observed in the radial deposition of the flame. Two sooting regimes were found: one is the transition from the condensed-phase precursors; the other is the aggregation of smaller soot particles (or chains of them) to be carried along particle path lines. In the high temperature flame edge outside the soot luminous flame surface, the very thin fiber-like structures, which are about 10 nm thick, were found.

  • PDF

An Experimental Study on Turbulent Counter Jet Flame near Stagnation Point (대향 제트 정체점 주변의 난류 화염에 관한 연구)

  • Ko, Il-Min;Seo, Jeong-Il;Hong, Jung-Goo;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.128-134
    • /
    • 2006
  • A characterization of turbulent reacting flows has proved difficult owing to the complex interaction between turbulence, mixing, and combustion chemistry. There are many types of time scales in turbulent flame which can determine flame structure. This counter jet type premixed burner produces high intensity turbulence. The goal is to gain better insights into the flame structures at high turbulence. 6 propane/air flames gave been studied with high velocity fluctuation in bundle type nozzle and in one hole type nozzle. By measuring velocity fluctuation, turbulent intensity and integral length scale are obtained. And sets of OH LIF images were processed to see flame structure of the mean flame curvatures and flame lengths for comparison with turbulence intensity and turbulent length scales. The results show that the decrease in nozzle size generates smaller flow eddy and mean curvatures of the flame fronts, and a decrease in Damkohler number estimated from flow time scale measurement.

  • PDF

Low Strain Rate Flame Extinction Characteristics of Opposed Flow Flame in a Mesoscale Channel with Variation of Oxygen Ratio (산화제의 산소농도에 따른 메소 스케일 대향류 저신장율 화염의 소멸특성)

  • Choi, Yongun;Lee, Min Jung;Jung, Yongjin;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.143-145
    • /
    • 2015
  • A mesoscale channel was designed to observe the flame stabilization at low strain rate conditions (< $10s^{-1}$). At this condition, the behavior of partially premixed flame was explored by changing a channel size and the oxygen ratio in the oxidant. In this work, experiment is conducted for propane case and it was compared with methane case of previous one. Conclusively, it can be observed that the strain rate of flame extinction and starting point of oscillation were varied with oxygen ratio. Moreover we can understand the effects of enhanced oxygen ratio of oxidant and flame behavior at low strain rate conditions.

  • PDF

Plasma spectroscopy aimed at quantifying the flame equivalence ratio (화염의 정성적 당량비 측정을 위한 Plasma Diagnostics에 관한 연구)

  • Lee, SeokHwan;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.99-101
    • /
    • 2013
  • The equivalence ratio is measured by LIBS(Laser-induced Breakdown spectroscopy) in hydrocarbon flame and high temperature (${\sim}3200^{\circ}C$) oxyhydrogen flame, where a stoichiometric mixture of hydrogen and oxygen is produced from water through electrolysis. The ratio of the hydrogen and oxygen (H/O) atomic lines intensities is used for quantitatively determining the quivalence ratio. laser energy is evaluated for determining the optimal condition for plasma diagnostics. The minimum laser energy for generating plasma in a laminar premixed hydrocarbon flame was about 70 mJ, whereas oxyhydrogen flame. consequently the irradiated spot of a lower density in high temperature oxyhydrogen flame gave rise to bigger plasma in size, thus limiting the spatial resolution of the LIBS measurement.

  • PDF

Characteristics of TiO2 Particle Generation and Transport in Diffusion Flame Reactor (확산 화염 반응기에서의 TiO2 입자생성 및 전달현상)

  • Choi, Sang-Keun;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.255-260
    • /
    • 2002
  • We prepared the nano-sized $TiO_2$ particles by the diffusion flame reactor and investigated the effects of several process variables on the generation and transport properties of $TiO_2$ particle. As the length from the tip of diffusion flame reactor increases, the size of $TiO_2$ particle increases by the coagulation between particles. The structure of $TiO_2$ particles prepared is almost found to be anatase. It was found that the $TiO_2$ particle size depends more largely on the change of reactor temperature than on the change of inlet $TiCl_4$ concentration.

  • PDF

LASER-INDUCED SOOT VAPORIZATION CHARACTERISTICS IN THE LAMINAE DIFFUSION FLAMES

  • Park, J.K.;Lee, S.Y.;Santor, R.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.95-99
    • /
    • 2002
  • The characteristics of soot vaporization induced by a high-energy Pulsed laser were studied in an ethylene-air laminar flame. A system consisting of two pulsed lasers was used for the experiments. The pulse from the first laser was used to vaporize the soot particles, and the delayed pulse from the second laser was used to measure the residual soot volume fraction. Laser-induced soot vaporization was characterized according to the initial particle size distribution. The results indicated that soot particles could not be completely vaporized simply by introducing a high intensity laser pulse. Residual soot volume fractions present after vaporization appeared to be insensitive to the initial soot particle size distribution. Since the soot vaporization effect is more pronounced in the region of high soot concentrations, this laser-induced soot vaporization technique may be a very useful tool for measuring major species in highly sooting flame.