• Title/Summary/Keyword: flame size

Search Result 312, Processing Time 0.029 seconds

The Effect of Particle Size on Combustion Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek;Jeon, Heung-Shin;Wongee Chun
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.162-169
    • /
    • 1997
  • The particle size effect on the combustion characteristics of pulverized coal was investigated in the cylindrical-shape, horizontal furnace, fired in the range of 8.8∼10.6 kw. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Burnout behavior of pulverized coal flame were determined through the measurement of stable species concentrations (CO$_2$and H$_2$O). Concentrations of CO$_2$were compared with the theoretical values and the result showed good agreement. Thermal behavior of pulverized coal flame were determined as maximum flame temperatures occurred at fuel-rich conditions in every case. Flame lengths were also determined by decreasing with the particle size decrease. The flame length of the fine sized coal sample was comparable to that produced by distillate oil. The color of the coal flames ranged from orange to yellow, with the flame of the fine size fraction being brighter and yellower than the others.

  • PDF

The Effect of Residence Time on the Generation of Silica Nanoparticles in a Turbulent Diffusion Flame (난류 확산화염에서 체류시간이 실리카 나노입자의 생성에 미치는 영향)

  • Kwak, In-Jae;Bae, Soo-Ho;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.196-201
    • /
    • 2006
  • Silica(SiO2) nanoparticles are used as additives in plastics and rubbers to improve mechanical, electrical, magnetic properties and optical material. Silica nanoparticles were synthesized by the gas phase thermal oxidation of several kinds of precursors in many types of reactor. Diffusion flame reactor has some advantages compared with other types of reactors. In this study, we investigated the generation of silica nanoparticles on the effect of residence time by tetraethylothosilicate(TEOS) in a turbulent diffusion flame reactor controlled by providing reactant flowrate and reactor geometry affect particle morphology, particle size and particle size distribution. To determine the flame residence time, flame length should be determined which was examined by ICCD image. Particle size, distribution and morphology were performed with TEM.

  • PDF

Effects of Flame Temperature on the Characteristics of Flame Synthesized $TiO_{2}$ Nanoparticles (화염온도에 따른 $TiO_{2}$ 나노입자의 결정구조 및 입자크기 변화)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Bae, Gwi-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1347-1352
    • /
    • 2004
  • In this work, $TiO_{2}$ nanoparticles were synthesized using a $N_{2}-diluted$ hydrogen coflow diffusion flame. The effect of flame temperature on the crystalline structure and the size of formed nanoparticles was investigated. The maximum centerline temperature of the flame ranged from 1,920K for $H_{2}-only$ flame to 863K for 81% $N_{2}-diluted$ flame. When the temperature was higher than about 1,000K, the particle size was tend to increase due to the agglomeration and sintering among the primary particles. On the other hand, when the temperature was lower than 1,000K, the portion of anatase phase was greater than 80%.

  • PDF

Effect of Flame Temperature on the Characteristics of Flame Synthesized TiO2 Nanoparticles (수소 확산화염에서 화염온도가 TiO2 나노입자의 합성에 미치는 영향)

  • Lee Gyo Woo;Lee Seung Bok;Lee Jongsoo;Bae Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1013-1021
    • /
    • 2005
  • In this work, $TiO_2$ nanoparticles were synthesized using a N2-diluted hydrogen coflow diffusion flame. The effects of flame temperature on the crystalline structure and the size of formed nanoparticles were investigated. The maximum centerline temperature of the flame ranged from 1,920K for $H_2-only$ flame to 863k for $81\%\;N_2-diluted$ flame. The morphology and the crystal structure of $TiO_2$ nanoparticles were analyzed by a TEM and a XRD, respectively. The particle size distribution was also measured by using a scanning mobility particle size. (SMPS). The mean particle diameter was calculated from the TEM images depended on the flame temperature, having minimum at about 1,look. Based on the SMPS measurements, the mean particle diameter of $TiO_2$ nanoparticles at flame temperatures > 1,300K was smaller than that at flame temperatures < 1,300K. From the XRD analysis, it was evident that the anatase fraction increased with decreasing the flame temperature. The portion of anatase phase in $TiO_2$ nanoparticles might be greater than $80\%$ when the flame temperature was lower than 1,000K.

The Effect of Particle Size on Ignition Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.285-292
    • /
    • 1993
  • A cylindrical-shape, horizontal furnace was used to investigate the effect of particle size on the pulverized coal combustion behavior. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Ignition characteristics of pulverized coal flame were determined through the amount of methane in the carrier gas for the self-sustaining flame. Easiest ignition occurred with the immediately-sized coal particles. Ignition of coal jet flame appeared to occur through a gas-phase homogeneous process for particles larger than 30 microns. Below this limiting size, heterogeneous process probably dominated ignition of coal flame. Oxygen concentration of combustion air was varied up to 50%, to determine the oxygen-enrichment effect on the coal ignition behavior. Oxygen enrichment of primary air assisted ignition behavior of pulverized coal flame. However, enrichment of secondary air didn't produce any effect on the ignition behavior.

  • PDF

Synthesis and Process Development of Ultrafine Ti Powder by Sodium Flame Encapsulation Method (Sodium Flame Encapsulation 방법에 의한 초미립 Ti 분말 합성 및 공정개발)

  • Maeng, Deok-Yeong;Lee, Chang-Gyu;Kim, Heung-Hui
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.391-397
    • /
    • 2002
  • Synthesis and process development of nano-size Ti powder by SFE(Sodium/halide Flame Encapsulation) method were investigated. Four concentric coflow burner was used and its flame configuration was $TiCl_4/Ar/Na/Ar$ in order from the center. Flame has been controlled by the various processing parameters such as temperature of burner and flow rates of both $TiCl_4$(g) precursor and Na(g). It was found that yellow-colored flame was shown in the flow rates of 70cc/min of $TiCl_4$(g) precursor and 2 $\ell$ /min of Na(g) which were regarded as optimum flame condition. The powders encapsuled by NaCl were produced having the average powder size of 250nm. The results of X-ray diffraction showed that powders from the optimized condition consisted of pure Ti and NaCl. TEM analysis confirmed that the several Ti powders of 20-100nm were encapsulated with NaCl. After removing sodium chloride by heat treatment, the spherical Ti powders with the size range of 80 to 150nm were obtained.

Study on Soot Primary Particle Size Measurement in Ethylene Diffusion Flame by Time-Resolved Laser-Induced Incandescence (시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 일차입자크기 측정에 관한 연구)

  • Kim Gyu-Bo;Cho Seung-Wan;Lee Jong-Ho;Jeong Dong-Soo;Chang Young-June;Jeon Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.973-981
    • /
    • 2006
  • Recently there is an increasing interest in particulate matter emission because of new emission regulations, health awareness and environmental problems. It requires to improve particulate measurement techniques as well as to reduce soot emissions from combustion systems. As mentioned above, it is demanded that reduction techniques together with measurement techniques of exhausted particulate matters in combustion systems such as vehicles. However, measurement techniques of particulate matters should be prior to reduction techniques of that because it is able to know an increase and a decrease of exhausted particulate matters when measured particulate matters. Therefore, in this study, we report the measurement of soot primary-particle size using time-resolved laser induced incandescence (TIRE-LII) technique in laminar ethylene diffusion flame. As an optical method, laser induced incandescence is one of well known methods to get information for spatial and temporal soot volume fraction and soot primary particle size. Furthermore, TIRE-LII is able to measure soot primary particle size that is decided to solve the decay ate of signal S $(t_1)$ and S $(t_2)$ at two detection time. In laminar ethylene diffusion flame, visual flame height is 40 mm from burner tip and measurement points are height of 15, 20, 27.5, 30 mm above burner tip along radial direction. As increasing the height of the flame from burne. tip, primary particle size was increased to HAB(Height Above Burner tip)=20mm, and then decreased from HAB=27.5 mm to 30 mm. This results show the growth and oxidation processes for soot particles formed by combustion.

Characterization of Iron Oxide Nanoparticles Synthesized by Flame Synthesis (화염법으로 제조된 산화철 나노입자의 특성평가)

  • Yang, Sang-Sun;Altman, Igor S.;Pikhitsa, Peter V.;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1162-1165
    • /
    • 2004
  • Size and crystalline phase changes of $Fe_{2}O_{3}$ nanoparticles formed in a $H_{2}/O_{2}$ flame have been investigated. At flame temperatures below $1350^{\circ}C$, the mean particle size increased monotonously with the distance from the burner edge; but in high-temperature flames above $1650^{\circ}C$, it suddenly decreased from 20 nm to ${\sim}3$ nm with the distance from the burner edge. The results of X-ray diffraction and HRTEM showed that this sudden reduction of the size of nanoparticles was accompanied by a partial phase transformation from ${\gamma}$-$Fe_{2}O_{3}$ into ${\alpha}$-$Fe_{2}O_{3}$. We suggest the structural instability due to ${\gamma}-$ to ${\alpha}-phase$ transformation as a mechanism for a rapid fragmentation of 20 nm particles into 3 nm ones.

  • PDF

Effect of Treatments with Flame-retardant on Flame-resistance and Tensile Strength of Paper (난연 처리가 종이의 난연성 및 인장강도에 미치는 영향)

  • Song, Han-Kyu;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.4 s.117
    • /
    • pp.61-67
    • /
    • 2006
  • The effect of several inorganic flame-retardants such as ammonium phosphate, ammonium sulfate, aluminum hydroxide and antimony trioxide on the flame-retardant property and tensile strength of paper has been investigated. Flame-retardants were used preferably as a dry powdered mixture and added to the furnish. Both dipping and coating treatments were employed to apply flame-retardants to paper Flame-retardant paper was manufactured by treatment of $5{\sim}30%$ flame-retardants by weight of the paper on a dry weight. Paper's flame-retardant property and tensile strength were examined by comparison of char length and tensile index. As dosages of flame-retardant chemicals increased, flame-retardant property was improved but tensile index was decreased.

LES Studies on the Characteristics of Turbulent Premixed Flame with the Configurations of Burner Exit (버너 출구의 형상변화에 따른 난류 예혼합 화염의 특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.96-104
    • /
    • 2006
  • In the present paper, the effects of combustion instability on flow structure and flame dynamic with the configurations of burner exit in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. As a result of mean flow field, the change of divergent half angle(${\alpha}$) at burner exit results in variations in the size and shape of the central toroidal recirculation(CTRZ) as well as flame length by changing corner recirculation zone(CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than that of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is the most shortest, while that in the case of ${\alpha}=30^{\circ}$ is the longest by the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it is identified that the case of ${\alpha}=45^{\circ}$ shows the most largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, comparing with that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons are discussed in detail through the analysis of unsteady phenomena about recirculation zone and flame surface. Finally the effects of flame-acoustic interaction are evaluated using local Rayleigh parameter.

  • PDF