• Title/Summary/Keyword: flame length

Search Result 329, Processing Time 0.024 seconds

A study on the influence of turbulence characteristics on burning speed in swirl flow field (스월유동장에 있어서 연소속도에 미치는 난류특성의 영향에 관한 연구)

  • Lee, Sang Jun;Lee, Jong-Tai;Lee, Song-Yol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.244-254
    • /
    • 1996
  • Flow velocity was measured by, use of hot wire anemometer. Turbulence intensity was in proportion to mean flow velocity regardless of swirl velocity. And integral length scale has proportional relation with swirl velocity regardless of measurement position. Turbulent burning speed during flame propagation which was determined by flame photograph and gas pressure of combustion chamber was increased with the lapse of time from spark and was decreased a little at later combustion period. Because of combustion promotion effect, turbulent burning speed was increased according to increase of turbulence intensity. Burning speed ratio i.e. ratio of turbulent burning speed ($S_BT$) to laminar burning speed ($S_BL$) was found out by use of turbulence intensity u' and integral length scale $l_x$ , $\delta_L$ is width of preheat zone in laminar flame.

Characteristics of Non-premixed Edge Flames in a Counterflow Slot Burner

  • Cha, Min-Suk;Ronney, Paul D.
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.4
    • /
    • pp.33-40
    • /
    • 2005
  • The propagation rates of advancing and retreating non-premixed edge flames in a slot-jet counterflow were measured as a function of strain rate for varying jet spacing, mixture strength, stoichiometric mixture fractions $(Z_{st})$ and Lewis numbers (Le). Methane and propane fuels were tested and nitrogen and carbon dioxide were used as inerts. As results, we could identify igniting fronts, retreating fronts, two total extinction limits, and short-length edge flames. A burner separation affected to a low extinction limit only. Regimes for advancing and retreating edges together with total extinction were mapped in terms of normalized flame thickness and heat loss factor for $CH_4/O_2/N_2$ mixtures. Edge flames for $Z_{st}$ > 0.5 behaved like a stronger mixture while for $Z_{st}$ < 0.5 showed deteriorated feature, because of relative locations of a non-premixed flame and intermediate species such as CO and $H_2$. Furthermore, due to the relative importance of heat loss, propagating speeds of edge flames were significantly enhanced in $CH_4/O_2/CO_2$ mixtures (Le < 1) demonstrating increasing stability limits. However $C_3H_8/O_2/N_2$ mixtures (Le > 1) showed opposite result.

  • PDF

Numerical Investigation of the Combustion Instability inside a Partially Premixed Combustor according to Fuel Composition (연료 조성에 따른 부분예혼합 연소기 내부 연소불안정 해석)

  • Nam, Jaehyun;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.24-33
    • /
    • 2021
  • Numerical study is conducted to analyze combustion instability in the partially premixed combustor. The simulations are performed according to fuel conditions, and Large Eddy Simulation(LES) model and PaSR combustion model are implemented in the solver. Comparison with the experimental result is conducted to confirm the validity of simulation, and quantitative and qualitative agreement is confirmed. The flame characteristics in the combustor are subsequently investigated, and the association with the occurrence of combustion instability is clarified. According to the simulation results, the flame length varies greatly depending on the fuel conditions. When the flame length becomes sufficiently long, flame-vortex interactions occurred around the wall sections, which works as the main cause of combustion instability.

Effects of Acoustic Excitation on NOx Emission in Partially Premixed LPG/Air Flames (부분적 예혼합 LPG/공기 화염에서 음향자진이 NOx 배출에 미치는 영향)

  • 장준영;박성호;김태권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.77-84
    • /
    • 2002
  • Measurements of NO and NOx emission of laminar partially premixed LPG/air flames with and without acoustic excitation are reported. The NOx emission at the tailpipe of a combustion chamber is determined by chemiluminescent analyser. The NOx measurements are taken in flames with several different center tube equivalance ratio( ø$\sub$o/), and overall equivalace ratio(ø$\sub$o/) for a fixed fuel flowrate. The NOx emission decrease to reach a minimum value at an optimum ø$\sub$c/ 2. Theø$\sub$c/ 2 flame gives a compromise of thermal NO and prompt NO mechanism. In the case of excitation. the visual shape of the flame is changed from laminar flame to turbulent-like flame. With increasing levels of excitation amplitude, an optimum value of the NO and NOx emission exists. A shorter flame caused by the enhanced upstream mixing due to acoustic excitation results in the reduction of NO and NOx emission in the present flames. The reduction of flame length affects the shorter residence time of center tube mixture, and significantly influences the NOx reduction.

The Role of Oxygen Atom in the NOx Formation of DME/Air Nonpremixed Flames (DME/Air 비예혼합화염의 NOx 생성에서 산소원자의 역할)

  • Kim, Tae-Hyun;Hwang, Cheol-Hong;Lee, Seung-Ro;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.9-18
    • /
    • 2009
  • The NOx emission characteristics of DME in counterflow nonpremixed flames were investigated numerically, and brief experiments were carried out to compare the flame shapes and NOx emissions with those of $C_{3}H_{8}$ and $C_{2}H_{6}$. The DME flames were calculated using Kaiser's mechanism, while the $C_{2}H_{6}$ flames were calculated using the $C_3$ mechanism. These mechanisms were combined with the modified Miller-Bowman mechanism for the analysis of NOx. Experimental results show that DME flame has the characteristics of partial premixed flame and the flame length becomes very shorter compared with general hydrocarbon fuels and then, the NOx emission of DME is low as much as 60 % of $C_{3}H_{8}$. In the calculated results of counterflow nonpremixed flames, the $EI_{NO}$ of DME nonpremixed flame is low as much as 50 % of the $C_{2}H_{6}$ nonpremixed flame. The cause of $EI_{NO}$ reduction is attributed mainly to the characteristics of partial premixed flame due to the existence of O atom in DME and partly to the O-C bond in DME, instead of C-C bond in hydrocarbon fuels.

  • PDF

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet (II) - Flame Structure and Temperature Distribution - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (II) - 화염의 구조와 온도분포 -)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.223-229
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase thermal efficiency due to increase of the flame temperature. Flame shapes, schlieren photos, OH radical chemiluminescence and local flame temperature were examined as a function of OEC(Oxygen Enriched Concentration) in a coaxial non-premixed jet. With increase of OEC, flame length and width decreased, but its brightness increased significantly, and the size of vortices in the flame also increased. Especially, the reaction around the flame surface became active. The strong OH intensity appeared to be made and moved from middle stream to upper one with increase of OEC, which shows combustion reaction in the upper stream becomes more dominant In addition, the temperature distributions of the flames showed similar tendency with OH radical intensities. A flame with high temperature and strong stability was obtained with increasing OEC of the coflow.

Combustion Characteristics of a Turbulent Non-premixed Flame Using High Preheated Air (고온 예열 공기에 의한 난류 비예혼합 화염의 연소 특성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.561-568
    • /
    • 2003
  • An experiment using high preheated air in a turbulent non-premixed flame was performed to investigate the effects of high preheated air on the combustion characteristics. Combustion using high preheated and diluted air with flue gas is a new technology which enables NO emission to be reduced. In this study, Na was used as diluent and propane as fuel. Combustion characteristics, especially the distributions of the flame temperature, NO concentration and OH radical intensity were examined under the condition of 300 K, 600 K, 1000 K in terms of the combustion air temperature, and also under the condition of the dilution level from 21% to 13% in terms of oxygen concentration. As the preheated air temperature increased, it appeared that the flame length became shorter, maximum flame temperature increased, the reaction region moved to upstream, and NO concentration increased, but the flame temperature's fluctuation was reduced. In opposite, it was shown with decrement of oxygen concentration at the maximum temperature that both maximum value and the gradient of the flame temperature decreased, and NO emission also decreased considerably, but its fluctuation became larger, being inclined to be unstable.

Discharge Properties of Torch-Type Atmospheric Pressure Plasma and Its Local Disinfection of Microorganism (토치형 상압 플라즈마의 방전특성과 미생물의 국부 살균효과)

  • Son, Hyang-Ho;Lee, Won-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.835-839
    • /
    • 2011
  • The characteristics of torch-type atmospheric pressure plasma and its sterilization effects have been analyzed. The length of plasma flame was varied with the level of applied voltage and the mixture gases composed of argon and oxygen. The effect of plasma flame on the temperature increase of surface treated was limited to $43^{\circ}C$ as a maximum temperature under exposing time of 10 min. The sterilization for E. coli was strongly affected by the applied voltage, the oxygen ratio in the mixture gas and the treatment time. At a high concentration of ozone, the increase of treatment time under the direct contact with plasma flame yields to maximize the effect of the sterilization on E. coli.

The Experimental Study for Heat Transfer and Combustion Characteristics of Gaseous Impinging Jet Premixed Flame (예혼합 화염이 벽면에 충돌시 열전달 및 연소특성에 관한 실험적 연구)

  • 정은규;조경민;김호영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.1-10
    • /
    • 1996
  • In the present study, the structure and the characteristics of gaseous premixed flame impinging normal to the flat plate have been investigated experimentally. For the examination of the heat transfer and combustion characteristics, measurements of temperature, direct and schlieren photography were performed. The results of present study show that the length of inner flame becomes smaller as distance from nozzle exit to plate decrease. The width of flame becomes larger as air-fuel ratio decreases. The smaller Reynolds number at nozzle exit and the smaller distance from nozzle exit to plate lead to the higher heat transfer rate in the region of center of plate. As the air-fuel ratio decreases, the heat transfer at plate with moderate rate occurs on wide region.

  • PDF

A study on the spray and flame by optically accessible D.I. diesel engine : analysis by Schlieren method and diffused background illumination method (가시용 직분식 디젤기관의 분무와 화염에 관한 연구)

  • 안수길;이덕보;라진홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.9-23
    • /
    • 1995
  • To analyze the spray and flame in D.I. diesel engine, the visualizing methods by schlieren photograph and diffused background illumination photograph with high speed camera are applied to optically accessible D.I.diesel engine. Wcaporating spray, spray droplets and brightness flame are taken with high speed camera by visuallizing method in accordance with various suction air temperature and injection time. The spray and flame image on the film was analyzed by image analyzer. The optically accessible D.I. diesel engine had the similar pressure characteristic to the real D.I. diesel engine. Experimental results showed that shadow areas of the evaporating spray were extended at higher suction air temperature, spray droplets had a max. Penetration length and their penetrating patterns were dependent on the surrounding gas temperature, and flame size after ignition was largely governed by the evaporated fuel quantity at ignition point and by the surrounding gas condition due to piston motion.

  • PDF