• Title/Summary/Keyword: flakeboard

Search Result 2, Processing Time 0.014 seconds

Effects of Species on the Isocyanate-bonded Flakeboard Properties

  • Kwon, Jin Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.38-45
    • /
    • 2007
  • Flakeboards made from ring- and drum-cut flakes of Douglas-fir, hemlock, red lauan and kapur using two kinds of resin levels were evaluated for the selected properties according to flake thickness. The pH and buffering capacity of four species were determined. Those of kapur were extremely different from the other three species. These pH and buffering capacity values result in the poor internal bond strength of kapur flakeboard. The internal bond strength was affected significantly by flake thickness, resin content and species. MOR and MOE in bending strength were maximized at medium drum-cut flake thickness. Screw holding strength was not consistent for flake thickness, but it was influenced by species. Thickness swelling and water absorption of Douglas-fir and hemlock flakeboard were minimized at medium drum-cut flake thickness.

Physical Properties of Hybrid Poplar Flakeboard Bonded with Alkaline Phenolic Soy Adhesives

  • Yang, In;Kuo, Monlin;Myers, Deland J.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.66-75
    • /
    • 2005
  • Soybean-based adhesives have recently been reconsidered as alternatives to petroleum-based adhesives due to the uncertainty of availability of petrochemical products and the increased demand for wood adhesives. This study was conducted to investigate the adhesive properties of alkaline phenolic soy (APS) resin for hybrid poplar flakeboard. The APS resin was formulated by crosslinking an alkaline soy flour hydrolyzate with lab-prepared PF resin in the soy hydrolyzate to PF resin weight ratios of 70/30, 60/40, and 50/50. The APS resins were used to fabricate homogeneous hybrid poplar flakeboards with different resin solid levels (5%, 7%, and 9%), press temperatures (175 and $200^{\circ}C$), and press times of 8 and 10 minutes. The IB, wet MOR, and dimensional stability properties of board improved with increasing press time, press temperature, and PF level in APS resins. Increasing press time can be used to offset poor IB strength associated with a 9% resin solid level and the excessive moisture content in the mat. The following conditions were concluded to meet the requirements of the CSA standard for exterior-grade flakeboard: a 50% PF level, a 5% resin content, a $200^{\circ}C$ press temperature, and an 8 minute press time.