• Title/Summary/Keyword: fixed point problems

Search Result 265, Processing Time 0.024 seconds

THREE-POINT BOUNDARY VALUE PROBLEMS FOR A COUPLED SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.773-785
    • /
    • 2012
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solutions to a general class of three-point boundary value problems for a coupled system of nonlinear fractional differential equations. The differential operator is taken in the Caputo fractional derivatives. By using Green's function, we transform the derivative systems into equivalent integral systems. The existence is based on Schauder fixed point theorem and contraction mapping principle. Finally, some examples are given to show the applicability of our results.

ANALYSIS OF THE VLASOV-POISSON EQUATION BY USING A VISCOSITY TERM

  • Choi, Boo-Yong;Kang, Sun-Bu;Lee, Moon-Shik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.501-516
    • /
    • 2013
  • The well-known Vlasov-Poisson equation describes plasma physics as nonlinear first-order partial differential equations. Because of the nonlinear condition from the self consistency of the Vlasov-Poisson equation, many problems occur: the existence, the numerical solution, the convergence of the numerical solution, and so on. To solve the problems, a viscosity term (a second-order partial differential equation) is added. In a viscosity term, the Vlasov-Poisson equation changes into a parabolic equation like the Fokker-Planck equation. Therefore, the Schauder fixed point theorem and the classical results on parabolic equations can be used for analyzing the Vlasov-Poisson equation. The sequence and the convergence results are obtained from linearizing the Vlasove-Poisson equation by using a fixed point theorem and Gronwall's inequality. In numerical experiments, an implicit first-order scheme is used. The numerical results are tested using the changed viscosity terms.

HOMOTOPY FIXED POINT SETS AND ACTIONS ON HOMOGENEOUS SPACES OF p-COMPACT GROUPS

  • Kenshi Ishiguro;Lee, Hyang-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.1101-1114
    • /
    • 2004
  • We generalize a result of Dror Farjoun and Zabrodsky on the relationship between fixed point sets and homotopy fixed point sets, which is related to the generalized Sullivan Conjecture. As an application, we discuss extension problems considering actions on homogeneous spaces of p-compact groups.

ACCELERATED STRONGLY CONVERGENT EXTRAGRADIENT ALGORITHMS TO SOLVE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REAL HILBERT SPACES

  • Nopparat Wairojjana;Nattawut Pholasa;Chainarong Khunpanuk;Nuttapol Pakkaranang
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.307-332
    • /
    • 2024
  • Two inertial extragradient-type algorithms are introduced for solving convex pseudomonotone variational inequalities with fixed point problems, where the associated mapping for the fixed point is a 𝜌-demicontractive mapping. The algorithm employs variable step sizes that are updated at each iteration, based on certain previous iterates. One notable advantage of these algorithms is their ability to operate without prior knowledge of Lipschitz-type constants and without necessitating any line search procedures. The iterative sequence constructed demonstrates strong convergence to the common solution of the variational inequality and fixed point problem under standard assumptions. In-depth numerical applications are conducted to illustrate theoretical findings and to compare the proposed algorithms with existing approaches.

POSITIVE SOLUTIONS OF SUPERLINEAR AND SUBLINEAR BOUNDARY VALUE PROBLEMS

  • Gatica, Juan A.;Kim, Yun-Ho
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 2017
  • We study the existence of positive solutions of second order nonlinear separated boundary value problems of superlinear as well as sublinear type without imposing monotonicity restrictions on the problem. The type of problem investigated cannot be analyzed using the linearization about the trivial solution because either it does not exist (the sublinear case) or is trivial (the superlinear case). The results follow from a known fixed point theorem by noticing that the concavity of the solutions provides an important condition for the applicability of the fixed point result.

A NEW METHOD FOR A FINITE FAMILY OF PSEUDOCONTRACTIONS AND EQUILIBRIUM PROBLEMS

  • Anh, P.N.;Son, D.X.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1179-1191
    • /
    • 2011
  • In this paper, we introduce a new iterative scheme for finding a common element of the set of fixed points of a finite family of strict pseudocontractions and the solution set of pseudomonotone and Lipschitz-type continuous equilibrium problems. The scheme is based on the idea of extragradient methods and fixed point iteration methods. We show that the iterative sequences generated by this algorithm converge strongly to the common element in a real Hilbert space.

WEAK INEQUALITIES WITH CONTROL FUNCTIONS AND FIXED POINT RESULTS

  • Choudhury, Binayak S.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.967-976
    • /
    • 2010
  • In recent times control functions have been used in several problems of metric fixed point theory. Also weak inequalities have been considered in a number of works on fixed points in metric spaces. Here we have incorporated a control function in certain weak inequalities. We have established two fixed point theorems for mapping satisfying such inequalities. Our results are supported by examples.

CONVERGENCE THEOREMS FOR TWO FAMILIES OF WEAK RELATIVELY NONEXPANSIVE MAPPINGS AND A FAMILY OF EQUILIBRIUM PROBLEMS

  • Zhang, Xin;Su, Yongfu
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.583-607
    • /
    • 2010
  • The purpose of this paper is to prove strong convergence theorems for common fixed points of two families of weak relatively nonexpansive mappings and a family of equilibrium problems by a new monotone hybrid method in Banach spaces. Because the hybrid method presented in this paper is monotone, so that the method of the proof is different from the original one. We shall give an example which is weak relatively nonexpansive mapping but not relatively nonexpansive mapping in Banach space $l^2$. Our results improve and extend the corresponding results announced in [W. Takahashi and K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008), Article ID 528476, 11 pages; doi:10.1155/2008/528476] and [Y. Su, Z. Wang, and H. Xu, Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009), no. 11, 5616?5628] and some other papers.

Convergence Theorem for Finding Common Fixed Points of N-generalized Bregman Nonspreading Mapping and Solutions of Equilibrium Problems in Banach Spaces

  • Jolaoso, Lateef Olakunle;Mewomo, Oluwatosin Temitope
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.523-558
    • /
    • 2021
  • In this paper, we study some fixed point properties of n-generalized Bregman nonspreading mappings in reflexive Banach space. We introduce a hybrid iterative scheme for finding a common solution for a countable family of equilibrium problems and fixed point problems in reflexive Banach space. Further, we give some applications and numerical example to show the importance and demonstrate the performance of our algorithm. The results in this paper extend and generalize many related results in the literature.

RANDOM GENERALIZED SET-VALUED COMPLEMENTARITY PROBLEMS

  • Lee, Byung-Soo;Huang, Nan-Jing
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • Complementaity problem theory developed by Lemke [10], Cottle and Dantzig [8] and others in the early 1960s and thereafter, has numerous applications in diverse fields of mathematical and engineering sciences. And it is closely related to variational inquality theory and fixed point theory. Recently, fixed point methods for the solving of nonlinear complementarity problems were considered by Noor et al. [11, 12]. Also complementarity problems related to variational inequality problems were investigated by Chang [1], Cottle [7] and others.

  • PDF