• Title/Summary/Keyword: fixation

Search Result 2,822, Processing Time 0.021 seconds

The Effect of Two Terpenoids, Ursolic Acid and Oleanolic Acid on Epidermal Permeability Barrier and Simultaneously on Dermal Functions (우솔릭산과 올레아놀산이 피부장벽과 진피에 미치는 영향에 대한 연구)

  • Suk Won, Lim;Sung Won, Jung;Sung Ku, Ahn;Bora, Kim;In Young, Kim;Hee Chang , Ryoo;Seung Hun, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.263-278
    • /
    • 2004
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1mg/mL UA or 0.1-1mg/mL ONA after tape stripping, and TEWL (transepidermal water loss) was measured. The recovery rate increased in those UA or ONA treated groups (0.1mg/mL UA and 0.5mg/mL ONA) at 6h more than 20% compared to vehicle treated group (p < 0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/mL per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from 1 week without TEWL alteration (p < 0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA=UA > vehicle). LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA > ONA > vehicle). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via PPAR Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either ONA (10${\mu}$M) or UA (10${\mu}$M) for 24 h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via PPAR Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.

Response of Potassium on Main Upland Crops (주요(主要) 전작물(田作物)에 대(對)한 가리성분(加里成分)의 비교(肥效))

  • Ryn, In Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 1977
  • The response and effect on main upland crops to potassium were discussed and summarized as follows. 1. Adequate average amounts of potash per 10a were 32kg for forage crop; 22.5kg for vegetable crops; 17.3kg for fruit trees; 13.3kg for potatoes; and 6.5kg for cereal crops. Demand of potassium fertilizer in the future will be increased by expanding the acreage of forage crops, vegetable crops and fruit trees. 2. On the average, optimum potash rates on barley, wheat, soybean, corn, white potato and sweet potato were 6.5, 6.9, 4.5, 8.1, 8.9, and 17.7kg per 10a respectively. Yield increaments per 1kg of potash per 10a were 4-5kgs on the average for cereal crops, 68kg for white potato, and 24kg for sweet potato. 3. According to the soil testing data, the exchangeable potassium in the coastal area was higher than that in the inland area and medium in the mountainous area. The exchangeable potassium per province in decreasing order is Jeju>Jeonnam>Kangweon>Kyongnam. Barley : 4. The response of barley to an adequate rate of potassium seemed to be affected more by differences in climatic conditions than to the nature of the soil. 5. The response and the adequate rate of potassium in the southern area, where the temperature is higher, were low because of more release of potassium from the soil. However, the adequate rate of phosphorus was increased due to the fixation of applied phosphorus into the soil in high temperature regions. The more nitrogen application would be required in the southern area due to its high precipitation. 6. The average response of barley to potassium was lower in the southern provinces than northern provinces. Kyongsangpukdo, a southern province, showed a relatively higher response because of the low exchangeable potassium content in the soil and the low-temperature environment in most of cultivation area. 7. Large annual variations in the response to and adequate rates of potassium on barley were noticed. In a cold year, the response of barley to potassium was 2 to 3 times higher than in a normal year. And in the year affected by moisture and drought damage, the responses to potassium was low but adequate rates was higher than cold year. 8. The content of exchangeable potassium in the soil parent materials, in increasing order was Crystalline Schist, Granite, Sedimentary and Basalt. The response of barley to potash occurred in the opposite order with the smallest response being in Crystalline Schist soil. There was a negative correlation between the response and exchangeable potassium contents but there was nearly no difference in the adequate rates of potassium. 9. Exchangeable potassium according to the mode of soil deposition was Alluvium>Residium>Old alluvium>Valley alluvium. The highest response to potash was obtained in Valley alluvium while the other s showed only small differences in responses. 10. Response and adequate rates of potassium seemed to be affected greatly by differences in soil texture. The response to potassium was higher in Sandy loam and Loam soils but the optimum rate of potassium was higher in Clay and Clay loam. Especially when excess amount of potassium was applied in Sandy loam and Loam soils the yield was decreased. 11. The application of potassium retarded the heading date by 1.7 days and increased the length of culm. the number of spikelet per plant, the 1,000 grain weight and the ratio of grain weight to straw. Soybean : 12. Average response of soybean to potassium was the lowest among other cereal crops but 28kg of grain yield was incrased by applying potash at 8kg/10a in newly reclaimed soils. 13. The response in the parent materials soil was in the order of Basalt (Jeju)>Sedimentay>Granite>Lime stone but this response has very wide variations year to year. Corn : 14. The response of corn to potassium decreased in soils where the exchangeable potassium content was high. However, the optimum rate of applied potassium was increased as the soil potassium content was increased because corn production is proportional to the content of soil potassium. 15. An interaction between the response to potassium and the level of phosphorus was noted. A higher response to potassium and higher rates of applied potassium was observed in soils contained optimum level of phosphorus. Potatoes : 16. White potato had a higher requirement for nitrogen than for potassium, which may imply that potato seems to have a higher capability of soil potassium uptake. 17. The yield of white potato was higher in Sandy loam than in Clay loam soil. Potato yields were also higher in soils where the exchangeable potassium content was high even in the same soil texture. However, the response to applied potassium was higher in Clay loam soils than in Sandy loam soils and in paddy soil than in upland soil. 18. The requirement for nitrogen and phosphorus by sweet potato was relatively low. The sweet potato yield is relatively high even under unfavorable soil conditions. A characteristics of sweet potatoes is to require higher level of potassium and to show significant responses to potassium. 19. The response of sweet potato to potassium varied according to soil texture. Higher yields were obtained in Sandy soil, which has a low exchangeable potassium content, by applying sufficient potassium. 20. When the optimum rate of potassium was applied, the yields of sweet potato in newly reclaimed soil were comparable to that in older upland soils.

  • PDF