• Title/Summary/Keyword: fix bond diffusion length

Search Result 1, Processing Time 0.014 seconds

Interfacial bond properties and comparison of various interfacial bond stress calculation methods of steel and steel fiber reinforced concrete

  • Wu, Kai;Zheng, Huiming;Lin, Junfu;Li, Hui;Zhao, Jixiang
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.515-531
    • /
    • 2020
  • Due to the construction difficulties of steel reinforced concrete (SRC), a new composite structure of steel and steel fiber reinforced concrete (SSFRC) is proposed for solving construction problems of SRC. This paper aims to investigate the bond properties and composition of interfacial bond stress between steel and steel fiber reinforced concrete. Considering the design parameters of section type, steel fiber ratio, interface embedded length and concrete cover thickness, a total of 36 specimens were fabricated. The bond properties of specimens were studied, and three different methods of calculating interfacial bond stress were analyzed. The results show: relative slip first occurs at the free end; Bearing capacity of specimens increases with the increase of interface embedded length. While the larger interface embedded length is, the smaller the average bond strength is. The average bond strength increases with the increase of concrete cover thickness and steel fiber ratio. And calculation method 3 proposed in this paper can not only reasonably explain the hardening stage after the loading end curve yielding, but also can be applied to steel reinforced high-strength concrete (SRHC) and steel reinforced recycled coarse aggregate concrete (SRRAC).