• Title/Summary/Keyword: fitting test

Search Result 598, Processing Time 0.023 seconds

Nonlinear Characteristics Evaluation of Tuned Liquid Damper with White Noise Amplitude (백색잡음 하중 크기에 따른 TLD의 비선형 특성 평가)

  • Woo, Sung-Sik;Lee, Sang-Hyun;Choi, Ki-Young;Chung, Lan;Park, Tae-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.135-143
    • /
    • 2008
  • In this study, it was investigated for dynamic nonlinear characteristics using dynamic data obtained by shaking table test. The design of Tuned Liquid Damper(TLD) has limitation to plan based on Tuned Mass Damper(TMD) analogy and linear wave theory. Also, while there are many studies regarding properties of TLD under harmonic load, there are not estimated for dynamic non-linear characteristics of TLD under the load that is not governed by particular frequency like a white noise. This paper investigated dynamic non-linear characteristics of TLD varied with load amplitude using a white noise and suggested equations that can estimate damping ratio, natural frequency ratio and effective mass ratio of TLD.

Research on prefabricated concrete beam-column joint with high strength bolt-end plate

  • Shufeng, Li;Di, Zhao;Qingning, Li;Huajing, Zhao;Jiaolei, Zhang;Dawei, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.395-406
    • /
    • 2020
  • Many prefabricated concrete frame joints have been proposed, and most of them showed good seismic performance. However, there are still some limitations in the proposed fabricated joints. For example, for prefabricated prestressed concrete joints, prefabricated beams and prefabricated columns are assembled as a whole by the pre-stressed steel bar and steel strand in the beams, which brings some troubles to the construction, and the reinforcement in the core area of the joints is complex, and the mechanical mechanism is not clear. Based on the current research results, a new type of fabricated joint of prestressed concrete beams and confined concrete columns is proposed. To study the seismic performance of the joint, the quasi-static test is carried out. The test results show that the nodes exhibit good ductility and energy dissipation. According to the experimental fitting method and the "fixed point pointing" law, the resilience model of this kind of nodes is established, and compared with the experimental results, the two agree well, which can provides a certain reference for elasto-plastic seismic response analysis of this type of structure. Besides, based on the analysis of the factors affecting the shear capacity of the node core area, the formula of shear capacity of the core area of the node is proposed, and the theoretical values of the formula are consistent with the experimental value.

Active mass driver control system for suppressing wind-induced vibration of the Canton Tower

  • Xu, Huai-Bing;Zhang, Chun-Wei;Li, Hui;Tan, Ping;Ou, Jin-Ping;Zhou, Fu-Lin
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.281-303
    • /
    • 2014
  • In order to suppress the wind-induced vibrations of the Canton Tower, a pair of active mass driver (AMD) systems has been installed on the top of the main structure. The structural principal directions in which the bending modes of the structure are uncoupled are proposed and verified based on the orthogonal projection approach. For the vibration control design in the principal X direction, the simplified model of the structure is developed based on the finite element model and modified according to the field measurements under wind excitations. The AMD system driven by permanent magnet synchronous linear motors are adopted. The dynamical models of the AMD subsystems are determined according to the open-loop test results by using nonlinear least square fitting method. The continuous variable gain feedback (VGF) control strategy is adopted to make the AMD system adaptive to the variation in the intensity of wind excitations. Finally, the field tests of free vibration control are carried out. The field test results of AMD control show that the damping ratio of the first vibration mode increases up to 11 times of the original value without control.

Analysis and Improvement of Factors Influencing the Transfer Alignment of INS of Underwater Projectile (수중발사체의 관성항로장치 전달정렬 영향인자 분석 및 개선방안)

  • Kim, Bo Ram;Jung, Young Tak;Lee, Sang Hoon;Kim, Young Wook;Kong, Hyeong Jik
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.245-254
    • /
    • 2021
  • Purpose: In order to accurately reach an underwater projectile to a target point, reliable INS and accurate arrangement of INS between master and slave INS is paramount. Unlike terrestrial and aerial environments, underwater projectile will operates in a restricted environment where location information cannot be received or sent through satellites. In this report, we review the factors affecting the transfer alignment of master and slave INS, as well as how to improve the positional error between INS through improved transfer alignment algorithms. Methods: In this work, we propose an improvement algorithm and verify it through simulation and driving test. The simulation confirmed the difference in the transfer alignment azimuth by fitting the MINS and SINS indoors, displacement in posture, and the process of transfer alignment between MINS and SINS through a driving test to confirm algorithm can improve the arrangement. Results: According to this study, reason for the error in the transfer alignment between MINS/SINS is the factors of the system where movements such as roll, pitch, yaw are not inter locked in real time due to the delay in transmit/receive system. And confirm that the improved algorithm has a desirable effect on accuracy. Conclusion: Through this work, it is possible to identify ways to improve the accuracy of underwater projectiles to reach their target points under various underwater environments and launch condition.

Analysis of MSGTR-PAFS Accident of the ATLAS using the MARS-KS Code (MARS-KS 코드를 사용한 ATLAS 실험장치의 MSGTR-PAFS 사고 분석)

  • Jeong, Hyunjoon;Kim, Taewan
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.74-80
    • /
    • 2021
  • Korea Atomic Energy Research Institute (KAERI) has been operating an integral effects test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), according to APR1400 for transient experimental and design basis accident simulation. Moreover, based on the experimental data, the domestic standard problem (DSP) program has been conducted in Korea to validate system codes. Recently, through DSP-05, the performance of the passive auxiliary feedwater system (PAFS) in the event of multiple steam generator tube rupture (MSGTR) has been analyzed. However, some errors exist in the reference input model distributed for DSP-05. Furthermore, the calculation results of the heat loss correlation for the secondary system presented in the technical report of the reference indicate that a large difference is present in heat loss from the target value. Thus, in this study, the reference model is corrected using the geometric information from the design report and drawings of ATLAS. Additionally, a new heat loss correlation is suggested by fitting the results of the heat loss tests. Herein, MSGTR-PAFS accident analysis is performed using MARS-KS 1.5 with the improved model. The steady-state calculation results do not significantly differ from the experimental values, and the overall physical behavior of the transient state is properly predicted. Particularly, the predicted operating time of PAFS is similar to the experimental results obtained by the modified model. Furthermore, the operating time of PAFS varies according to the heat loss of the secondary system, and the sensitivity analysis results for the heat loss of the secondary system are presented.

Development and Evaluation of Wearable Smart Clothing for Combined EMG Devices (웨어러블 근전도 디바이스 결합형 스마트의류 개발 및 성능평가)

  • Sojung Lee;Hyelim Kim;Wonyoung Jeong
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.210-220
    • /
    • 2023
  • Recently, smart wearable products, including electromyography (EMG) measurement devices and clothing, have been developed to monitor users' exercise levels, muscle activation, and muscle balance more effectively during fitness activities. However, technical and socioeconomic barriers, such as flexibility and durability, still pose challenges in terms of comfort, ease of wear, and wearability of smart clothing, which includes devices and circuits. To address these issues, this study developed a wearable EMG device integrated with clothing to collect valid EMG signals from desired muscles while maintaining comfort, functionality, and ease of wear. After deriving a combined structure that could stably position the wearable device within the clothing, a prototype was manufactured and evaluated for fit, compression, comfort, and exercise comfort test by ten participants (height = 176.2 cm, weight = 76.4 kg, chest circumference = 101.2 cm). The study found that the prototype had smaller circumferences around the chest, waist, and abdomen compared to commercial products, resulting in lower ratings for wearing comfort and ease of wear. However, the prototype received high ratings for fitting, pressure, and the exercise comfort test. Valid signals were obtained when the EMG device was combined to the prototype for the rectus femoris muscle, indicating stable positioning of the device during exercise.

Development and usability test of transfer device with customized sling lifts

  • SeYeon Jeong;KiHun Cho;SoungKyun Hong;WonJae Choi;Kwangkook Lee;Kyeongbong Lee;GyuChang Lee
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.4
    • /
    • pp.9-16
    • /
    • 2023
  • Background: Bedridden patients and disabled persons need help from a guardian or caregiver even in performing simple activities of daily living. In particular, for body transfer of them, the use of a transfer lift has been recommended. However, the devices currently in use have limitations in terms of support according to the individual's characteristics. This study aimed to develop a transfer lift device utilizing the patients' body-fitting sling equipped with an air tube inside the sling. In addition, we have conducted usability tests to examine the safety, effectiveness, and satisfaction with this device. Design: This study conducted usability tests with 10 healthy adults. Methods: Customized sling lifts are generally floor-based devices that consisted of a sling that holds the patient's body and a lift that moves the sling to the desired position. One characteristic feature of the device is an air tube, which is used on the sling to allow the patient's body can be adjusted. A usability test was performed in terms of the operators, who operated the device to transfer the patients. Ten operators tried the device and tested its usability. Results: The mean of 10 question for Questions was 4.18. Conclusion: The device can be useful in the advance- ment and commercialization of customized sling lifts, to ensure the safe and efficient transfer of persons with disabilities.

Development of Slacks Pattern for Old Aged Abdominal Obese Women (복부 비만 노년 여성을 위한 슬랙스 패턴 개발)

  • Kim, Seon-Ok;Kweon, Soo-Ae;Yoo, Jung-Ja
    • Korean Journal of Human Ecology
    • /
    • v.18 no.1
    • /
    • pp.157-166
    • /
    • 2009
  • This study was conducted to evaluate the differences in external appearances and functional qualities between the slacks which were patterned on existing designs and on a new design in order to improve on their level of comfort of ready-made clothes for abdominally fat women. Five abdominally fat women in their 60's were chosen as experimental participants. Twenty-four external evaluation items, and seven different actions involving six moving parts of the body were investigated with a 5-level scale in the repeated wearing test. The results were analyzed by statistical methods. The newly designed pattern in this study was definitely superior to the other two patterns(L-type and K-type) on the external appearance evaluation. The newly pattern removed a waist belt and a dart from the front part of the garment and gave surplus space around the waist. It prevented superfluous wrinkles at the abdominal region and thighs. The superfluous wrinkles at the side regions also disappeared due to the length (inseam) reduction from waist to crotch. The newly pattern made the center-line of the back side slightly sloped to the main pattern in order to remove the drooped line. The newly pattern showed the highest score in the functional test of several actions. It was due to the reduction of the length from waist to crotch as well as the belt width. It made waist-line movement better, and made it easier and more comfortable to sit down. The newly pattern also showed the highest score in the functional test classified by specific movements of parts of the body for the same purpose. The slacks which were made of elastic materials showed better results than the non-elastic ones on external appearances and functional test items. It showed that the elastic materials played a better role in the increase of functional action of abdominally fat, aged women. This study suggests that the newly designed slacks pattern could give abdominally fat, aged women better external features and a more comfortable fitting sensation. As well, the results were significant as basic data to produce ready-made and/or tailer-made garments.

A Study on the Development of Diagnosing System of Defects on Surface of Inner Overlay Welding of Long Pipes using Liquid Penetrant Test (PT를 이용한 파이프내면 육성용접부 표면결함 진단시스템 개발에 관한 연구)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.121-127
    • /
    • 2018
  • A system for diagnosing surface defects of long and large pipe inner overlay welds, 1m in diameter and 6m in length, was developed using a Liquid Penetrant Test (PT). First, CATIA was used to model all major units and PT machines in 3-dimensions. They were used for structural strength analysis and strain analysis, and to check the motion interference phenomenon of each unit to produce two-dimensional production drawings. Structural strength analysis and deformation analysis using the ANSYS results in a maximum equivalent stress of 44.901 MPa, which is less than the yield tensile strength of SS400 (200 MPa), a material of the PT Machine. An examination of the performance of the developed equipment revealed a maximum travel speed of 7.2 m/min., maximum rotational speed of 9 rpm, repeatable position accuracy of 1.2 mm, and inspection speed of $1.65m^2/min$. The results of the automatic PT-inspection system developed to check for surface defects, such as cracks, porosity, and undercut, were in accordance with the method of ASME SEC. V&VIII. In addition, the results of corrosion testing of the overlay weld layer in accordance with the ferric chloride fitting test by the method of ASME G48-11 indicated that the weight loss was $0.3g/m^2$, and met the specifications. Furthermore, the chemical composition of the overlay welds was analyzed according to the method described in ASTM A375-14, and all components met the specifications.

Air Density Measurement in a Narrow Test Section Using a Laser Absorption Spectroscopy (레이저 흡수 분광법을 사용한 좁은 시험 구간 내 공기 밀도 측정)

  • Shim, Hanseul;Jung, Sion;Kim, Gyeongrok;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.893-900
    • /
    • 2021
  • In this study, air density in a narrow test section is measured using a laser absorption spectroscopy system that detects oxygen absorption lines. An absorption line pair at 13156.28 and 13156.62 cm-1 are detected. A gas chamber with a height of 40 mm is used as a narrow test section. A triangular spiral-shaped laser path is applied in the gas chamber to amplify absorption strength by extending laser beam path length. A well-known logarithm amplifier and a secondary amplifier are used to electrically amplify absorption signal. An AC-coupling is applied after the logarithm amplifier for signal saturation prevention and noise suppression. Procedure of calculating spectral absorbance from output signal is introduced considering the logarithm amplifier circuit configuration. Air density is determined by fitting the theoretically calculated spectral absorbance to the measured spectral absorbance. Test conditions with room temperature and a pressure range of 10~100 kPa are made in a gas chamber using a Bourdon pressure gauge. It is confirmed that air density in a narrow test section can be measured within a 16 % error through absorption signal amplification using a triangular spiral-shaped beam path and a logarithm amplifier.