• Title/Summary/Keyword: first shear plate deformation theory

Search Result 229, Processing Time 0.021 seconds

A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates

  • Khetir, Hafid;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • In this paper, a new nonlocal trigonometric shear deformation theory is proposed for thermal buckling response of nanosize functionally graded (FG) nano-plates resting on two-parameter elastic foundation under various types of thermal environments. This theory uses for the first time, undetermined integral variables and it contains only four unknowns, that is even less than the first shear deformation theory (FSDT). It is considered that the FG nano-plate is exposed to uniform, linear and sinusoidal temperature rises. Mori-Tanaka model is utilized to define the gradually variation of material properties along the plate thickness. Nonlocal elasticity theory of Eringen is employed to capture the size influences. Through the stationary potential energy the governing equations are derived for a refined nonlocal four-variable shear deformation plate theory and then solved analytically. A variety of examples is proposed to demonstrate the importance of elastic foundation parameters, various temperature fields, nonlocality, material composition, aspect and side-to-thickness ratios on critical stability temperatures of FG nano-plate.

A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations

  • Hachemi, Houari;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.717-726
    • /
    • 2017
  • In this paper, a new simple shear deformation theory for bending analysis of functionally graded plates is developed. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not required. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. Equations of motion are obtained by utilizing the principle of virtual displacements and solved via Navier's procedure. The elastic foundation is modeled as two parameter elastic foundation. The results are verified with the known results in the literature. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, elastic foundation, and volume fraction distributions are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the bending behaviour of functionally graded plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates

  • Hebali, Habib;Bakora, Ahmed;Tounsi, Abdelouahed;Kaci, Abdelhakim
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.473-495
    • /
    • 2016
  • This work presents a bending, buckling, and vibration analysis of functionally graded plates by employing a novel higher-order shear deformation theory (HSDT). This theory has only four unknowns, which is even less than the first shear deformation theory (FSDT). A shear correction coefficient is, thus, not needed. Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations

  • Abdelbari, Salima;Fekrar, Abdelkader;Heireche, Houari;Said, Hayat;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.329-348
    • /
    • 2016
  • This work presents a simple hyperbolic shear deformation theory for analysis of functionally graded plates resting on elastic foundation. The proposed model contains fewer number of unknowns and equations of motion than the first-order shear deformation model, but the transverse shear stresses account for a hyperbolic variation and respect the tangential stress-free boundary conditions on the plate boundary surface without introducing shear correction factors. Equations of motion are obtained from Hamilton's principle. The Navier-type analytical solutions for simply-supported plates are compared with the existing solutions to demonstrate the accuracy of the proposed theory.

Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory

  • Bourada, Fouad;Amara, Khaled;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1287-1306
    • /
    • 2016
  • The current research presents a buckling analysis of isotropic and orthotropic plates by proposing a new four variable refined plate theory. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves only four variables. The governing equations for buckling analysis are deduced by utilizing the principle of virtual works. The analytical solution of a simply supported rectangular plate under the axial loading has been determined via the Navier method. Numerical investigations are performed by using the proposed model and the obtained results are compared with CPT solutions, FSDT solutions, and the existing exact solutions in the literature. It can be concluded that the developed four variable refined plate theory, which does not use shear correction coefficient, is not only simple but also comparable to the FSDT.

Non-linear thermal buckling of FG plates with porosity based on hyperbolic shear deformation theory

  • Hadji, Lazreg;Amoozgar, Mohammadreza;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.711-722
    • /
    • 2022
  • In this paper, hyperbolic shear deformation plate theory is developed for thermal buckling of functionally graded plates with porosity by dividing transverse displacement into bending and shear parts. The present theory is variationally consistent, and accounts for a quadratic variation of the transverse shearstrains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Three different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. The logarithmic-uneven porosities for first time is mentioned. Equilibrium and stability equations are derived based on the present theory. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, aspect ratio and side-to-thickness ratio on the buckling temperature difference of imperfect FG plates.

Dynamic Characteristics of Anisotropic Laminated Plates (이방성 복합재료의 동적특성에 관한 연구)

  • Park, Sungjin;Baek, Jooeun
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • In this study, the impact problems are brought up and the formulation by isoparametric element is attempted for the purpose of analyzing the response characteristics of laminated plate receiving impact load based on the first-order shear deformation theory expanded from the Mindlin plate theory. The result of static analysis and dynamic analysis is drawn through the numerical analysis rectangular and circular plates of antisymmetric Angle-Ply laminated plate using the finite element method and the analysis on each displacement is compared.

Free vibration analysis of FG carbon nanotube reinforced composite plates using dynamic stiffness method

  • Shahabeddin Hatami;Mohammad Reza Bahrami
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.135-148
    • /
    • 2024
  • This paper analytically investigates the free vibration analysis of functionally graded-carbon nanotube reinforced composite (FG-CNTRC) plates by dynamic stiffness method (DSM). The properties of CNTRC are determined with the extended rule of mixture. The governing differential equations of motion based on the first-order shear deformation theory of CNTRC plate are derived using Hamilton's principle. The FG-CNTRC plates are studied for a uniform and two different distributions of carbon nanotubes (CNTs). The accuracy and performance of the DSM are compared with the results obtained from closed closed-form and semi-analytical solution methods in previous studies. In this study, the effects of boundary condition, distribution type of CNTs, plate aspect ratio, plate length to thickness ratio, and different values of CNTs volume fraction on the natural frequencies of the FG-CNTRC plates are investigated. Finally, various natural frequencies of the plates in different conditions are provided as a benchmark for comparing the accuracy and precision of the other analytical and numerical methods.

Computational electromechanical approach for stability/instability of smart system actuated with piezoelectric NEMS

  • Luo, Zhonghua;Cheng, Xiaoling;Yang, Yuhan
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.211-227
    • /
    • 2022
  • In this research, the size-dependent impact of an embedded piezoelectric nanoplate subjected to in-plane loading on free vibration characteristic is studied. The foundation is two-parameter viscoelastic. The nonlocal elasticity is employed in order to capture the influence of size of the plate. By utilizing Hamilton's principle as well as the first- order shear deformation theory, the governing equation and boundary conditions are achieved. Then, using Navier method the equations associated with the free vibration of a plate constructed piezoelectric material under in-plane loads are solved analytically. The presented formulation and solution procedure are validated using other papers. Also, the impacts of nonlocal parameter, mode number, constant of spring, electric potential, and geometry of the nanoplate on the vibrational frequency are examined. As this paper is the first research in which the vibration associated with piezoelectric nanoplate on the basis of FSDT and nonlocal elasticity is investigated analytically, this results can be used in future investigation in this area.

An analytical solution for static analysis of a simply supported moderately thick sandwich piezoelectric plate

  • Wu, Lanhe;Jiang, Zhiqing;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.641-654
    • /
    • 2004
  • This paper presents a theoretic model of a smart structure, a transversely isotropic piezoelectric thick square plate constructed with three laminas, piezoelectric-elastic-piezoelectric layer, by adopting the first order shear deformation plate theory and piezoelectric theory. This model assumes that the transverse displacements through thickness are linear, and the in-plane displacements in the mid-plane of the plate are not taken to be account. By using Fourier's series expansion, an exact Navier typed analytical solution for deflection and electric potential of the simply supported smart plate is obtained. The electric boundary conditions are being grounded along four vertical edges. The external voltage and non-external voltage applied on the surfaces of piezoelectric layers are all considered. The convergence of the present approach is carefully studied. Comparison studies are also made for verifying the accuracy and the applicability of the present method. Then some new results of the electric potentials and displacements are provided. Numerical results show that the electrostatic voltage is approximately linear in the thickness direction, while parabolic in the plate in-plane directions, for both the deflection and the electric voltage. These results are very useful for distributed sensing and finite element verification.