• Title/Summary/Keyword: fire-resistant

Search Result 269, Processing Time 0.028 seconds

A Study on the Development of a Dry PFB Method with High Fire Resistance (건식화 P0SCO E&C Fire Board (PFB)공법 개발에 관한 연구)

  • Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.953-956
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire.resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire.resistant boards.According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116$^{\circ}$C in 15mm, 103.8$^{\circ}$C in 20mm, and 94$^{\circ}$C in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3.hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF

The Fire induced Thermal Stress Analysis of PC Box Bridge (PC Box교량의 화재에 대한 열응력해석)

  • 최창근;이계희;최인혁;김일곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.125-132
    • /
    • 1998
  • In this study the fire, due to overturning of oil tanker on the bridge induced heat transfer analysis and thermal stress analysis are carried out. The results of analysis for fire history of 1 hour present very large thermal gradient near the surface. However, the temperature increase of tendon & rebar that is the main resistant member of bridge is not sufficient to change material properties. The Von-Mises yield criteria is used to calculate the depth of delamination, The depth of delamination is about 4cm at center of fire and this value is close to measured value.

  • PDF

Fire Resistant Performance of Anti-Spalling ECC Layers in High-Strength Concrete Structures (ECC로 피복된 고강도콘크리트의 폭렬저감 및 열적특성에 관한 실험적 연구)

  • Lee, Jae-Young;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.199-202
    • /
    • 2008
  • The purpose of this study is to obtain the fundamental fire resistance performance of engineered cementitious composites(ECC) under fire temperature in order to use the fire protection material in high-strength concrete structures. The present study conducted the experiment to simulate fire temperature by employing of ECC and investigated experimentally the explosion and cracks in heated surface of these ECC. In the experimental studies, 3 HSC specimens are being exposed to fire, in order to examine the influence of various parameters(such as depth of layer=20, 30, 40mm; construction method=lining type) on the fire performance of HSC structures. Employed temperature curve were ISO 834 criterion(3hr), which are severe in various criterion of fire temperature in building structures. The numerical regressive analysis and proposed equation to calculate ambient temperature distribution is carried out and verified against the experimental data. By the use of proposed equation, the HSC members subjected to fire loads were designed and discussed.

  • PDF

A Study on the Enhancement of Fire Resistance Function in Primary Structure Department of Building Type Traditional Market (건물형 전통시장 화재발생시 피난안전성 확보를 위한 규모별 주요구조부 내화보강 연구)

  • Jang, Hye-Min;Hwang, Jung-Ha
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.87-95
    • /
    • 2020
  • This study evaluates the safety of an asylum through a fire simulation of building Type traditional markets. We derive the building's indoor temperature, use the observed variation in temperature gradient to calculate the temperature of the main structure, and finally compares the time required to attain the limit temperature of the structure its time of escape. To ensure improved security of the asylum, the government has proposed a fire-resistance improvement plan for the major structural parts of buildings are not safe with thickness of 0.01 m and 0.035 m. F.ire-resistance reinforcement for small - and medium-sized vehicles is more than 0.025 m, in thickness; moreover safety can be ensured for medium and large-sized vehicles fire using fire resistant reinforcement of over 0.035 m. Accordingly, in order to ensure the safety of an asylum, fire-resistant reinforcement measures may be considered.

Heat Transfer Characteristics of Bulkhead Penetration Piece for A60 Class Compartment I: Transient Thermal (A60급 구획 적용 격벽 관통용 관의 열전달 특성 I: 관의 설계에 따른 과도 열해석)

  • Park, Woo-Chang;Song, Chang Yong;Na, Ok-Gyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.310-323
    • /
    • 2018
  • In order to protect lives and prevent large-scale injuries in the event of a fire on a ship or an offshore plant, most classification societies are strengthening their fire resistance designs of relevant cargo holds and accommodation compartments to keep flames from being transferred from a fire point to other compartments. Particularly in critical compartments, where flames should not propagate for a certain period of time, such as the A60 class division, both the airtightness and fire-resistant design of a piece passing through a bulkhead are subject to the Safety of Life at Sea Convention (SOLAS) issued by the International Maritime Organization (IMO). In order to verify the suitability of a fire-resistant design for such a penetrating piece, the fire test procedure prescribed by the Maritime Safety Committee (MSC) must be carried out. However, a numerical simulation should first be conducted to minimize the time and cost of the fire resistance test. In this study, transient thermal analyses based on the finite element method were applied to investigate the heat transfer characteristics of a bulkhead penetration piece for the A60 class compartment. In order to determine a rational bulkhead penetration piece design, the transient heat transfer characteristics according to the variation of design parameters such as the diameter, length, and material were reviewed. The verification of the design specification based on a numerical analysis of the transient heat transfer performed in this study will be discussed in the following research paper for the actual fire protection test of the A60 class bulkhead penetration piece.

Comparison of the Apple Rootstock Cultivar with the MR5 Resistance Traits of Fire Blight Resistance (과수화상병 저항성 사과대목의 MR5보유 대목별 비교)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.48-48
    • /
    • 2020
  • Fire blight, caused by Erwinia amylovora(Burrill), is a destructive disease of apple that damages blossoms, shoots, and woody plant organs. The fire blight disease is a worldwide problem for pome fruit growers because all popular apple cultivars are susceptible to the disease. Recently, fire blight of apple rootstocks has become a serious economic problem in high-density orchard systems in korea. The most commonly used dwarfing root stocks, M.9 and M.26, are highly susceptible to E. amylovora. The objective of the apple rootstock-breeding program has been to develop pomologically excellent rootstocks with resistance to abiotic and biotic stresses, including fire blight. Budagovsky 9 (B.9) apple rootstock is reported to be highly susceptible when inoculated with E. amylovora, although results from multiple trials showed that B.9 is resistant to rootstock blight infection in field plantings. So we tried to collect the apple rootstocks traits of fire blight resistance. The apple genotype Malus Robusta 5 (MR5) represents an ideal donor for fire blight resistance because it was described as resistant to all currently known European strains of the pathogen. The PCR for detecting the MR5 gene using the primers Md_MR5_FL_F/Md_MR5_FL_R. The results of these experiments confirmed some apple rootstocks traits of fire blight resistance showed the MR5. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene-for-gene interaction in the host-pathogen relationship MR5-E. amylovora.

  • PDF

On the Chinese Code on fire safety design of steel building structures

  • Li, G.Q.;Guo, S.X.;Jiang, S.C.
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.395-405
    • /
    • 2005
  • This work introduces to the international scientific community the Chinese Code on fire safety design of steel building structures. The aim of the Code is to prevent the structure of a steel building subjected to fire from collapsing, ensure safe evacuation of building occupants, and reduce the cost for repairing the damages of the structure caused by fire. The main contents of the Code is presented in this paper, including the fire duration requirements of structural components, fundamental requirements on fire safety design of steel components, temperature increasing of atmosphere and components in fire, loading effect and capacity of various components in fire, and procedure for fire-resistant design of steel components. The analytical approach is employed in the Code and the effectiveness of the Code is validated through experiments.

Fire Resistant Performance after Application of Repaired Materials for Fire-Damaged Reinforced Concrete Column (화재피해를 입은 철근콘크리트 단주시험체의 보수재료 적용 후 내화성능 평가)

  • Sim, Sang-Rak;Ryu, Dong-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.5
    • /
    • pp.147-154
    • /
    • 2020
  • Currently, there are no specific repair methods for RC structures damaged by fire, and repair methods are applied when durability deteriorates due to aging. In addition, a number of recent studies have been reported that have conducted fire resistance assessment of the repair materials themselves, assuming exposure to high-temperature environments such as fires. However, researches that evaluate the fire resistance performance of the repair materials by applying existing repair materials to the actual fire damaged reinforced concrete structures are very rare. Therefore, in this study, a number of existing repair materials were applied to fire-damaged concrete column to compare and evaluate the fire resistance performance with the original cover concrete.

Effects of Geological Structure and Tree Density on the Forest Fire Patterns (지형구조와 나무밀도가 산불패턴에 미치는 영향)

  • Song, Hark-Soo;Kwon, Oh Sung;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.259-266
    • /
    • 2014
  • Understanding the forest fire patterns is necessary to comprehend the stability of the forest ecosystems. Thus, researchers have suggested the simulation models to mimic the forest fire spread dynamics, which enables us to predict the forest damage in the scenarios that are difficult to be experimentally tested in laboratory scale. However, many of the models have the limitation that many of them did not consider the complicated environmental factors, such as fuel types, wind, and moisture. In this study, we suggested a simple model with the factors, especially, the geomorphological structure of the forest and two types of fuel. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space at densities ranging from 0.5 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by the structure and tree density. We believe that our model can be a useful tool to explore forest fire spreading patterns.