• 제목/요약/키워드: fire-exposed concrete

검색결과 187건 처리시간 0.033초

Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns

  • Seitllari, A.;Naser, M.Z.
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.271-282
    • /
    • 2019
  • Concrete undergoes a series of thermo-based physio-chemical changes once exposed to elevated temperatures. Such changes adversely alter the composition of concrete and oftentimes lead to fire-induced explosive spalling. Spalling is a multidimensional, complex and most of all sophisticated phenomenon with the potential to cause significant damage to fire-exposed concrete structures. Despite past and recent research efforts, we continue to be short of a systematic methodology that is able of accurately assessing the tendency of concrete to spall under fire conditions. In order to bridge this knowledge gap, this study explores integrating novel artificial intelligence (AI) techniques; namely, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA), together with traditional statistical analysis (multilinear regression (MLR)), to arrive at state-of-the-art procedures to predict occurrence of fire-induced spalling. Through a comprehensive datadriven examination of actual fire tests, this study demonstrates that AI techniques provide attractive tools capable of predicting fire-induced spalling phenomenon with high precision.

화재시 횡구속재 변화에 따른 고성능 콘크리트의 폭열방지성능에 관한 기초적 연구 (A Fundamental Study on the Performance of Spalling Resistance of High Performance Concrete with Material of Lateral Confinement Subjected to Fire)

  • 배정렬;황인성;홍상희;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술논문발표회
    • /
    • pp.47-50
    • /
    • 2002
  • This paper presents the results of fire resistance properties of high performance concrete varying with fiber kinds and the size of metal lath in order to verify the validities of fiber on the spatting resistance by fire. Metal lath, glass fiber and carbon fiber are used to confine the concrete. According to test results, plain concrete without lateral confinement and confined concrete with glass fiber and carbon fiber show entire failure after exposed to fire, while confined concrete with metal lath take place in the form of slight surface spatting by fire, which has favorable spatting resistance of concrete. As for the effect of the size of metal lath, when the size of metal lath is more than 1.2mm of thickness, the residual strength of concrete exposed to fire maintains more than 80% of its original strength. However, glass fiber and carbon fiber does not perform desirable spatting resistance by fire due to loss of lateral confinement of fiber exposed to fire caused by melting of fiber and reducing bond strength between concrete and fiber.

  • PDF

Mechanical behaviour of steel fibre reinforced SCC after being exposed to fire

  • Ponikiewski, Tomasz;Katzer, Jacek;Kilijanek, Adrian;Kuzminska, Elzbieta
    • Advances in concrete construction
    • /
    • 제6권6호
    • /
    • pp.631-643
    • /
    • 2018
  • The focus of this paper is given to the investigation of mechanical properties of steel fibre reinforced self-compacting concrete after being exposed to fire. The research programme covered tests of two sets of beams: specimens subjected to fire and specimens not subjected to fire. The fire test was conducted in an environment mirroring one of possible real fire situations where concrete surface for an extended period of time is directly exposed to flames. Micro-cracking of concrete surface after tests was digitally catalogued. Compressive strength was tested on cube specimens. Flexural strength and equivalent flexural strength were tested according to RILEM specifications. Damages of specimens caused by spalling were assessed on a volumetric basis. A comparison of results of both sets of specimens was performed. Significant differences of all tested properties between two sets of specimens were noted and analysed. It was proved that the limit of proportionality method should not be used for testing fire damaged beams. Flexural characteristics of steel fibre reinforced self-compacting concrete were significantly influenced by fire. The influence of fire on properties of steel fibre reinforced self-compacting concrete was discussed.

Thermo-mechanical analysis of reinforced concrete slab using different fire models

  • Suljevic, Samir;Medic, Senad;Hrasnica, Mustafa
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.163-182
    • /
    • 2020
  • Coupled thermo-mechanical analysis of reinforced concrete slab at elevated temperatures from a fire accounting for nonlinear thermal parameters is carried out. The main focus of the paper is put on a one-way continuous reinforced concrete slab exposed to fire from the single (bottom) side as the most typical working condition under fire loading. Although contemporary techniques alongside the fire protection measures are in constant development, in most cases it is not possible to avoid the material deterioration particularly nearby the exposed surface from a fire. Thereby the structural fire resistance of reinforced concrete slabs is mostly influenced by a relative distance between reinforcement and the exposed surface. A parametric study with variable concrete cover ranging from 15 mm to 35 mm is performed. As the first part of a one-way coupled thermo-mechanical analysis, transient nonlinear heat transfer analysis is performed by applying the net heat flux on the exposed surface. The solution of proposed heat analysis is obtained at certain time steps of interest by α-method using the explicit Euler time-integration scheme. Spatial discretization is done by the finite element method using a 1D 2-noded truss element with the temperature nodal values as unknowns. The obtained results in terms of temperature field inside the element are compared with available numerical and experimental results. A high level of agreement can be observed, implying the proposed model capable of describing the temperature field during a fire. Accompanying thermal analysis, mechanical analysis is performed in two ways. Firstly, using the guidelines given in Eurocode 2 - Part 1-2 resulting in the fire resistance rating for the aforementioned concrete cover values. The second way is a fully numerical coupled analysis carried out in general-purpose finite element software DIANA FEA. Both approaches indicate structural fire behavior similar to those observed in large-scale fire tests.

고온에 노출된 콘크리트의 수열온도 추정을 위한 실험적 연구 (An Experimental Study on the Supposed Heating Temperature of Exposed Concrete at High Temperature)

  • 장재봉;이의배;조봉석;김용로;권영진;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.157-160
    • /
    • 2004
  • If concrete structure is exposed to high temperature such as long-term fire, damages affecting partial or whole structure system may occur. Therefore accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary. Especially, the amount of fire damage done to concrete depends on the materials, the standard design compressive strength of concrete, and heated temperature. So, the object of this study is to present data for supposed heated Temperature of deteriorated concrete by fire.

  • PDF

화재피해 통신구의 안전진단 (A Safety Evaluation of Cable Tunnel Exposed to Fire)

  • 김지상;김형우;김효환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.221-226
    • /
    • 1994
  • A safety evaluation of cable tunnel, which is a concrete box structure with telecommunication facilities in it, exposed to fire is given. The immediate field observation was performed to find out any sign of sudden structural failure. In some region, where the fire intensity was heavy, the spalling of concrete cover in upper slab occurred. Next, more careful investigation was done with proper non-desturctive testing methods and structural analysis taking into account the changes in material properties due to fire. It seems that there is no severe damage on concrete, reinforcements and over all structural system.

  • PDF

화재 피해를 입은 고 강도 철근콘크리트 휨 부재의 구조 거동 (Structural Behavior of Fire-Damaged Reinforced Concrete Beam with High Strength Concrete)

  • 신미경;신영수;이차돈;홍성걸;이은주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.635-638
    • /
    • 2003
  • This paper deals with structural behavior of reinforced concrete beams with high strength under fire and fire damaged condition. The main purpose of this study is to evaluate the residual strength of flexural members by exposure time to fire. For this purpose, six beam specimens are fabricated and experimented. Among the specimens, four specimens are exposed to the fire for 60 and 90 minutes and two specimens are control beam that is not exposed to fire. After being cooled in room temperature, the specimens are loaded to the failure. The research result shows that the main variables of the test, concrete cover and exposure time to fire are much influenced on the structural behavior and the residual strength.

  • PDF

Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks

  • Erdem, Hakan
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.711-716
    • /
    • 2017
  • This paper presents a method using artificial neural networks (ANNs) to predict the residual moment capacity of thermally insulated reinforced concrete (RC) beams exposed to fire. The use of heat resistant insulation material protects concrete beams against the harmful effects of fire. If it is desired to calculate the residual moment capacity of the beams in this state, the determination of the moment capacity of thermally insulated beams exposed to fire involves several consecutive calculations, which is significantly easier when ANNs are used. Beam width, beam effective depth, fire duration, concrete compressive and steel tensile strength, steel area, thermal conductivity of insulation material can influence behavior of RC beams exposed to high temperatures. In this study, a finite difference method was used to calculate the temperature distribution in a cross section of the beam, and temperature distribution, reduction mechanical properties of concrete and reinforcing steel and moment capacity were calculated using existing relations in literature. Data was generated for 336 beams with different beam width ($b_w$), beam account height (h), fire duration (t), mechanical properties of concrete ($f_{cd}$) and reinforcing steel ($f_{yd}$), steel area ($A_s$), insulation material thermal conductivity (kinsulation). Five input parameters ($b_w$, h, $f_{cd}$, $f_{yd}$, $A_s$ and $k_{insulation}$) were used in the ANN to estimate the moment capacity ($M_r$). The trained model allowed the investigation of the effects on the moment capacity of the insulation material and the results indicated that the use of insulation materials with the smallest value of the thermal conductivities used in calculations is effective in protecting the RC beam against fire.

철근콘크리트 구조물의 내화성능에 관한 연구 (A Study on the Fire Resisting Properties of Reinforced Concrete Structures)

  • 김무한;송하영
    • 한국화재소방학회논문지
    • /
    • 제2권1호
    • /
    • pp.3-10
    • /
    • 1988
  • Concrete is incombustible and has good fire resisting properties, i. e. when exposed to fire it continues to perform satisfactorily for a reasonable period of time. Nevertheless, with time and high temperature gradient, brought about the fire, causes cracking and spatting. Further deterioration and loss of strength are caused by gradual dehydration of concrete paste. This paper is aimed to make a proposal for the design and construction of reinforced concrete structures with more sufficent resistance to fire by the theoritical analysis, which is base4 on investigation of general damages by the fire and change of properties on concrete influenced by high temperature.

  • PDF

Recovery of mortar-aggregate interface of fire-damaged concrete after post-fire curing

  • Li, Lang;Zhang, Hong;Dong, Jiangfeng;Zhang, Hongen;Jia, Pu;Wang, Qingyuan;Liu, Yongjie
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.249-258
    • /
    • 2019
  • In order to investigate the strength recovery of fire-damaged concrete after post-fire curing, concrete specimens were heating at $2^{\circ}C/min$ or $5^{\circ}C/min$ to 400, 600 and $800^{\circ}C$, and these exposed specimens were soaked in the water for 24 hours and following by 29-day post-fire curing. The compressive strength and split tensile strength of the high-temperature-exposed specimens before and after post-fire curing were tested. The proportion of split aggregate in the split surfaces was analyzed to evaluate the mortar-aggregate interfacial strength. After the post-fire curing process, the split tensile strength of specimens exposed to all temperatures was recovered significantly, while the recovery of compressive strength was only obvious within the specimens exposed to $600^{\circ}C$. The tensile strength is more sensitive to the mortar-aggregate interfacial cracks, which caused that the split tensile strength decreased more after high-temperature exposure and recovery more after post-fire curing than the compressive strength. The mortar-aggregate interfacial strength also showed remarkable recovery after post-fire curing, and it contributed to the recovery of split tensile strength.