• Title/Summary/Keyword: fire resistant materials

Search Result 83, Processing Time 0.02 seconds

A Survey on Asbestos Exposure Possibility in Indoor and Outdoor Environments of Childcare Centers (어린이집 실내·외 석면노출 가능성 조사에 관한 연구)

  • Park, Whame;Son, Byeung-Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.122-129
    • /
    • 2014
  • Objectives: Because of its properties such as resistance to heat, chemicals and corrosion; tensile strength; sound absorption; and affordable price, asbestos has been widely used as a building material, fire resistant and retardant, thermal and heat insulator, soundproofing material, and electrical insulation. Since the prolonged inhalation of asbestos can cause serious illnesses such as lung cancer, mesothelioma, and asbestosis after an incubation period of 20 to 40 years, the mineral was classified as a Group 1 carcinogen by the International Agency for Research on Cancer, an intergovernmental agency forming part of the World Health Organization. Children and infants are more at risk than are adults if they are exposed to carcinogens, due to aweaker immunity that has not yet been fully developed. Most childcare centers are operated all day and children tend to spend a great amount of time in the centers. This is why it is important for them to be systematically isolated from environments that may expose them to asbestos. Materials: In order to understand both indoor and outdoor hazards to which children may have been exposed, the study focused on actual surveys of asbestos used in childcare centers, paying special attention to slate-roofed buildings in the vicinity of the centers. Results: A survey of a total of 211 childcare centers showed that the buildings of 18.1% of the centers contained asbestos, with 60.53% of the material being found in classroom ceilings. "Tex" was the most used material for ceilings, making up 89.47% of all ceilings. An outdoor survey showed that childcare centers in Daegu Metropolitan City had an average of 143 slate-roof buildings within a distance of 1km. Conclusions: Buildings housing mainly toddlers, children, teenagers and others more vulnerable to the toxicity of asbestos are not subject to asbestos investigation by law. A legal and practical basis for asbestos control is required for such buildings. In particular, housing materials which contain asbestos in day care centers require asbestos control. GIS should be used to identify the location of buildings with slate roofing materials in the vicinity of daycare centers in order to gauge toxicity of exposure to asbestos caused by potential asbestos friability possibility in outdoor conditions.

Surface characteristics for thermal diffusion of FA-BFS-based geopolymer ceramics added alumina aggregate (알루미나 골재를 첨가한 FA-BFS계 지오폴리머 세라믹스의 열확산에 대한 표면 특성)

  • Kim, Jin-Ho;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • Geopolymer is an eco-friendly construction material that has various advantages such as reduced $CO_2$ emission, fire resistance and low thermal conductivity compared to cement. However, it has not been many studies on the thermal behavior of the surface of the geopolymer panel when flame is applied to the surface. In this study, surface characteristics of hardened geopolymer on flame exposure was investigated to observe its characteristics as heat-resistant architectural materials. External structure changes and crack due to the heat shock were not observed during the exposure on flame. According to the residue of calcite and halo pattern of aluminosilicate gel, decarboxylation and dehydration were extremely limited to the surface and, therefore, it is thought that durability of hardened geopolymer was sustained. Gehlenite and calcium silicate portion was inversely proportional to quartz and calcite and significantly directly proportional to BFS replacement ratio. Microstructure changes due to the thermal shock caused decarboxylation and dehydration of crystallization and it was developed the pore and new crystalline phase like calcium silicate and gehlenite. It is thought that those crystalline phase worked as a densification and strengthening mechanism on geopolymer panel surface.

A Study on the Mechanical Properties of Fiber Reinforced Concrete by Kenaf Dosages (양마의 혼입량에 따른 섬유보강 콘크리트의 역학적 특성에 관한 연구)

  • Kwon, Yeong-Ho;Jun, Woo-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.19-25
    • /
    • 2014
  • The purpose of this study is to establish experimentally the mechanical properties of fiber reinforced concrete using kenaf dosages and propose the usable method of kenaf fiber in the concrete industry as natural fiber materials. Kenaf fiber help make the concrete strength including tensile and flexural stronger, more resistant to plastic and drying shrinkage, less amount of carbon dioxide because of having a rough surface and excellent tensile strength of fiber and improving the concrete's corrosion resistance. It is to select the kenaf dosages of 4 cases (0, 0.3, 0.6 and $0.9kg/m^3$ and perform various tests including slump, air content, plastic and drying shrinkage, flexural and tensile strength for fiber reinforced concrete. The results of this study are as follows : In case of increasing kenaf fiber dosages, show the slump decrease and air content increase, also take effect results for increasing concrete strength including flexural and tensile, decreasing plastic and drying shrinkage. therefore, considered test results and cost, the optimum dosages of kenaf fiber is proposed about $0.6kg/m^3$ and need to study on the site application considering concrete quality and another compared tests.