• Title/Summary/Keyword: fire modeling

Search Result 339, Processing Time 0.036 seconds

Uncertainty Analysis of Fire Modeling Input Parameters for Motor Control Center in Switchgear Room of Nuclear Power Plants (원자력발전소 모터제어반 스위치기어실 화재 모델링 입력변수 불확실성 분석)

  • Kang, Dae-Il;Yang, Joon-Eon;Yoo, Seong-Yeon
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.40-52
    • /
    • 2012
  • This paper presents the uncertainty analysis results of fire modeling input parameters for motor control center in switchgear room of nuclear power plants. FDS (Fire Dynamics simulator) 5.5 was used to simulate the fire scenario and Latin Hyper Cube Monte Carlo simulations were employed to generate random samples for FDS input parameters. The uncertainty analysis results of input parameters are compared with those of the model uncertainty analysis and sensitivity analysis approaches of NUREG-1934. The study results show that the input parameter uncertainty analysis approach may lead to more conservative results than the uncertainty analysis and sensitivity analysis methods of NUREG-1934.

Application of FDS for the Hazard Analysis of Lubricating Oil Fires in the Air Compressor Room of Domestic Nuclear Power Plant (국내 원자력발전소의 공기 압축기실에서 윤활유 화재의 위험성 분석을 위한 FDS의 활용)

  • Han, Ho-Sik;Hwang, Cheol-Hong;Baik, Kyung Lok;Lee, Sangkyu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • The standard procedure of fire modeling was reviewed to minimize the user dependence, based on the NUREG-1934 and 1824 reports. The hazard analysis of lubricating oil fires in the air compressor room of domestic nuclear power plant (NPP) was also performed using a representative fire model, FDS (Fire Dynamics Simulator). The area ($A_f$) and location of fire source were considered as major parameters for the realistic fire scenarios. As a result, the maximum probability to exceed the thermal damage criteria of IEEE-383 unqualified electrical cables was predicted as approximately 70% with $A_f=1m^2$. It was also found that for qualified electrical cables, the maximum probabilities of exceeding the criteria were 2% and 90% with $A_f=2$ and $4m^2$, respectively. It was concluded that all electrical cables should be replaced with IEEE-383 qualified cables and the dike to restrict as $A_f{\leq}2m^2$ should be installed at the same time, in order to assure the thermal stability of electrical cables for lubricating oil fires in the air compressor room of domestic NPP.

Safety Evaluation of Tunnel Fire by CFD Modeling (터널화재의 CFD Modeling에 의한 안전성 평가방법)

  • Lee, Chang Wook;Lee, Keun Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.84-84
    • /
    • 2011
  • 터널화재의 위험요소에 대한 해석을 위해서는 실제 상황을 재현한 실대형 실험이 가장 유용하겠지만 현실적으로 시간적, 공간적, 경제적인 제약이 따르기 때문에 CFD Modeling 기술의 이용 및 검증이 필요하고, 실제 상황에 가까운 현상의 재현을 위해서는 시뮬레이션의 정확도에 대한 향상이 필수적이다. 또한, CFD Modeling을 터널화재에 적용할 때 시뮬레이션의 질에 영향을 미칠 수 있는 요소들에 대한 결정이 선행되어야 한다. 우선, 터널의 기하학적 구조와 경계조건의 확립이 필요한데 필요한 정보를 얻기 위해서 어느정도 길이의 터널이 적절한지에 대해 생각할 필요가 있으며, 단면변화에 대한 결정을 통해 모델링을 수행하여야 한다. 모델링 작업이 선행된 후에 화재의 위치, 성장률, 최대 크기, 환기시스템 사항 등의 고려가 필요한데 이러한 조건들은 CFD Modeling의 결과에 직접적인 영향을 주기 때문에 충분한 사전조사가 이루어져야 하고, 각 사항들의 변수를 고려하여 다양한 화재시나리오의 도출이 가능할 수 있다. 마지막으로, 화재에서 발생된 열중 약 30%가 복사에 의해 주위 벽으로 전달될 수 있고 열은 연기가 가득찬 영역내에서 재분배될 수 있는데, 열전달 및 연기의 유동 등에 관한 자료를 기초로 화재현상에 대한 분석이 가능하다. 이러한 과정들을 통해 실제 상황에 가까운 설계화재 시나리오를 예측할 수 있다. 본 연구에서는 우리나라 최장대터널인 죽령터널에 대해 합리적인 가정을 통한 설계화재 시나리오를 기초로 화재시뮬레이션은 FDS(Fire Dynamics Simulator) 프로그램을 사용하여 화재 및 연기의 이동 양상을 분석하고, 피난시뮬레이션은 SIMULEX 프로그램을 사용하여 피난시간을 예측 함으로써 터널화재의 CFD Modeling에 의한 피난안전성을 검토하고자 한다.

  • PDF

Case Study about Performance Based Design through Fire & Egress Simulation for Atrium of A Hotel & Casino (A 호텔 & 카지노 아트리움의 화재 및 피난시뮬레이션을 통한 성능위주설계 사례연구)

  • Park, Chang-Bok;Lee, Yong-Ju;Kim, Min-Ju;Yoon, Myong-O;Choi, Young-Hwa;Park, Jae-Sung;Kim, Hwan-Jin
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.13-19
    • /
    • 2009
  • This study is related with fire risk assessment for occupant of the area adjacent to not enclosed atrium through the computer modeling and application of enhanced fire protection systems depending on the result. Fire scenario is intended to evaluate the impact of a fire from atrium base within the corridor adjacent to the atrium and to compare with egress time depending on the warning system. The major purpose of this study is to figure out fire life safety for occupant adjacent to atrium through the computer simulation and to suggest alternative option in case the occupant safety is not guaranteed.

Prediction of post fire load deflection response of RC flexural members using simplistic numerical approach

  • Lakhani, Hitesh;Singh, Tarvinder;Sharma, Akanshu;Reddy, G.R.;Singh, R.K.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.755-772
    • /
    • 2014
  • A simplistic approach towards evaluation of complete load deflection response of Reinforced Concrete (RC) flexural members under post fire (residual) scenario is presented in this paper. The cross-section of the RC flexural member is divided into a number of sectors. Thermal analysis is performed to determine the temperature distribution across the section, for given fire duration. Temperature-dependent stress-strain curves for concrete and steel are then utilized to perform a moment-curvature analysis. The moment-curvature relationships are obtained for beams exposed to different fire durations. These are then utilized to obtain the load-deflection plots following pushover analysis. Moreover one of the important issues of modeling the initial stiffness giving due consideration to stiffness degradation due to material degradation and thermal cracking has also been addressed in a rational manner. The approach is straightforward and can be easily programmed in spreadsheets. The presented approach has been validated against the experiments, available in literature, on RC beam subjected to different fire durations viz. 1hr, 1.5hrs and 2hrs. Complete load-deflection curves have been obtained and compared with experimentally reported counterparts. The results also show a good match with the results obtained using more complicated approaches such as those involving Finite element (FE) modeling and conducting a transient thermal stress analysis. Further evaluation of the beams during fire (at elevated temperatures) was performed and a comparison of the mechanical behavior of RC beams under post fire and during fire scenarios is made. Detailed formulations, assumptions and step by step approach are reported in the paper. Due to the simplicity and ease of implementation, this approach can be used for evaluation of global performance of fire affected structures.

The Effects of Water Mist on the Compartment Fire

  • Ryou, Hong-Sun;Kim, Sung-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • The present study investigates the fire suppression characteristics using a water mist fire suppression system. Numerical simulations of fire suppression with water mist are performed with considering the interaction of fire plume and water spray. The predicted temperature fields of smoke layer are compared with those of measured data. Numerical results agree with the experimental results within $10^{\circ}C$ in the case without water mist. In the case of fire suppression with water mist, numerical results do not predict well for temperature field in the gradual cooling region after water mist injection. But the predicted results of initial fire suppression are in good agreement with those of measured data. The reason for the discrepancy between predicted and measured data is due to the poor combustion modeling during the injection of water mist. More elaborate models for numerical simulation are required for better predictions of the fire suppression characteristics using water mist.